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Toward Speed-of-Sound Anisotropy
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Abstract— The velocity of ultrasound longitudinal waves1

(speed of sound) is emerging as a valuable biomarker for2

a wide range of diseases, including musculoskeletal disor-3

ders. Muscles are fiber-rich tissues that exhibit anisotropic4

behavior, meaning that velocities vary with the wave-5

propagation direction. Therefore, quantifying anisotropy is6

essential to improve velocity estimates while providing a7

new metric related to muscle composition and architecture.8

For the first time, this work presents a method to esti-9

mate speed-of-sound anisotropy in transversely isotropic10

tissues using pulse-echo ultrasound. We assume elliptical11

anisotropy and consider an experimental setup with a flat12

reflector parallel to the linear probe, with the muscle in13

between. This setup allows us to measure first-arrival reflec-14

tion traveltimes using multistatic operation. Unknown mus-15

cle parameters are the orientation angle of the anisotropy16

symmetry axis and the velocities along and across this17

axis. We derive analytical expressions for the nonlinear18

relationship between traveltimes and anisotropy parame-19

ters, including reflector inclinations. These equations are20

exact for homogeneous media and are useful to estimate21

the effective average anisotropy in muscles. To analyze the22

structure of this forward problem, we formulate the inversion23

statistically using the Bayesian framework. We demonstrate24

that anisotropy parameters can be uniquely constrained25

by combining traveltimes from different reflector inclina-26

tions. Numerical results from wide-ranging acquisition and27

anisotropy properties show that uncertainties in velocity28

estimates are substantially lower than expected velocity29

differences in the muscle. Thus, our approach could provide30

meaningful muscle anisotropy estimates in future clinical31

applications.32

Index Terms— Anisotropy, Bayesian inference, longitudi-33

nal waves, muscle, speed of sound, transverse isotropy,34

ultrasound, uncertainty quantification.35
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I. INTRODUCTION 36

SPEED-OF-SOUND estimation in tissue using ultra- 37

sound has attracted considerable attention in recent 38

years [1]–[7]. Speed of sound refers to the propagation veloc- 39

ity of longitudinal waves, which are typically used for image 40

formation in ultrasound systems. This property contains clini- 41

cally relevant information about tissue composition and shows 42

great promise as a biomarker for a wide range of diseases. 43

Clinical applications involving longitudinal-wave velocities 44

include, for instance, breast cancer screening [1], [8], [9], 45

hepatic steatosis assessment [10], [11], and diagnosis of mus- 46

culoskeletal disorders [12], [13]. 47

Unlike breast and liver tissue, muscles exhibit anisotropic 48

mechanical properties due to their fibrous structure. Velocities 49

vary with the ultrasound wave-propagation direction, showing 50

higher values along fiber direction than across fibers. Empirical 51

studies in ex vivo human and animal tissues have reported 52

velocity differences of up to 24 m/s [14]–[18]. Hence, failure 53

to properly account for anisotropy can result in unreliable 54

velocity estimates. Quantifying anisotropy is clinically inter- 55

esting mainly for two reasons. On the one hand, it can provide 56

improved velocity estimates, which are informative about 57

muscle composition [13]. On the other hand, this property is 58

directly related to the muscle fiber distribution, encoding also 59

information about muscle architecture. 60

Anisotropy estimation can be particularly relevant for mon- 61

itoring sarcopenia cost-efficiently. This is an age-related mus- 62

culoskeletal disorder characterized by the progressive loss of 63

both muscle mass and function. Speed of sound is strongly cor- 64

related with reference standards for quantifying muscle mass 65

loss [13] and have proven promising for differentiating young 66

and older populations [12]. However, the loss in muscle mass 67

is not correlated with the loss in muscle function [19], and both 68

are required to assess this pathology accurately [20]. Current 69

standards to measure muscle function, which is related to the 70

muscle fiber arrangement [21], are based on questionnaires or 71

tests [20]; thus, they do not include any quantitative imaging 72

tool. In this context, estimating speed-of-sound anisotropy 73

with ultrasound could bring significant benefits for assessing 74

sarcopenia. 75

Methods to characterize the anisotropy of (quasi-) 76

longitudinal waves are relatively unexplored in the literature. 77

Studies addressing this topic have only focused on in vitro 78

measurements, where experimental setups are not appropri- 79

ate for clinical examinations [14]–[18]. Characterization of 80

anisotropy in shear waves, on the contrary, is an active research 81
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field. Lee et al. [22] developed an approach termed elastic82

tensor imaging (ETI) to map myocardial fiber directions based83

on shear-wave anisotropy. ETI uses either linear-probe rota-84

tions or 2-D matrix-array probes [23] to measure shear-wave85

velocities at different propagation directions. From here, fiber86

orientation angles can be extracted by assuming the medium87

as transversely isotropic. Measurements in animal myocardial88

samples have demonstrated strong correlations of ETI with89

histological data [22] and diffusion tensor magnetic resonance90

imaging [24]. A similar approach using 2-D matrix probes91

was also suggested by Wang et al. [25], who generalized the92

method to cases in which the shear-wave excitation push is not93

perpendicular to fibers. Shear-wave velocity measurements,94

however, are prone to artifacts caused by tissue inhomo-95

geneities. To circumvent this, Hossain et al. [26] proposed96

measuring tissue peak displacements at locations of the shear-97

wave excitation source. Variations of this quantity as a function98

of the probe orientation were seen to correlate with anisotropy99

in shear moduli [26]. This approach showed promising results,100

for example, for monitoring the status of renal transplant in101

humans [27].102

Shear and longitudinal waves interrogate fundamentally103

different but complementary mechanical tissue properties [28].104

Due to the acquisition setup of ultrasound systems, they105

typically propagate in approximately perpendicular directions;106

thus, we cannot directly extrapolate to longitudinal waves the107

techniques developed for quantifying shear-wave anisotropy.108

This work aims to present a method capable of quantifying109

speed-of-sound anisotropy in muscle using pulse-echo ultra-110

sound. We consider a setup with a flat reflector located oppo-111

site the ultrasound probe, allowing us to measure first-arrival112

reflection traveltimes [4]. In Section II, we derive the analytical113

expression of the relationship between these traveltimes and114

muscle anisotropy. Their sensitivity to different anisotropy115

parameters is discussed in Section III. Section IV briefly116

introduces the Bayesian inversion approach used in this study.117

We then analyze the nature of the proposed problem with118

various numerical examples in Section V. Finally, Section VI119

summarizes key aspects of the method and carefully discusses120

its clinical relevance and potential improvements.121

II. TRAVELTIME MODELING IN ANISOTROPIC MEDIA122

The alignment of fibers in muscles causes anisotropy in123

mechanical muscle properties. Commonly, muscle tissue is124

described as a transversely isotropic medium with the sym-125

metry axis along the fiber direction [25], [26], [29], [30].126

Such a medium is characterized by five independent elastic127

parameters, describing, for instance, the longitudinal- and128

shear-wave velocities along and across the symmetry axis.129

In soft tissue, however, shear-wave velocities are negligible130

in comparison to longitudinal-wave velocities [31]. Therefore,131

it is possible to describe muscle properties using only three132

independent parameters. In this study, we assume elliptical133

anisotropy, which is a special case of transverse isotropy. The134

validity of this assumption is discussed in Appendix A. The135

three independent parameters are then the orientation angle136

ϕ of the anisotropy symmetry axis and the velocities along137

Fig. 1. Schematic representation of the anisotropic medium and
experimental setup considered in this study. (a) Wavefronts in elliptically
anisotropic media are ellipsoidal. Parameters v1 and v2 represent veloc-
ities along and across muscle fibers, and ϕ describes the orientation of
fibers with respect to the coordinate system. In an arbitrary propagation
direction θ connecting xA and xB, waves propagate with velocity vθ =
v (θ). (b) Our experimental setup includes a flat reflector located opposite
the probe, with tissue in between. The probe-reflector distance L is
assumed to be controlled by a positioning frame and a digital sensor.
We measure first-arrival reflection traveltimes of ultrasound signals
emitted from xS and received at xR, with xP ∈ D indicating the reflection
point.

(v1) and across (v2) this axis. In such a medium, the group 138

(ray) velocity v(θ) in an arbitrary propagation direction θ 139

satisfies [32], [33] 140

v2(θ)

v2
1

sin2 (θ − ϕ) + v2(θ)

v2
2

cos2 (θ − ϕ) = 1 (1) 141

where the angles θ and ϕ are illustrated in Fig. 1(a). 142

Traveltimes of different arrivals are affected by the 143

direction-dependent velocity v(θ), and we can use them to 144

retrieve anisotropy parameters m = (v1, v2, ϕ). For simplicity, 145

we consider the muscle as a 2-D homogeneous medium. 146

Using (1) and trigonometric identities, the traveltime tAB 147

between positions xA and xB is given by 148

t2
AB = 1

v2
1

[(
x1,B − x1,A

)
cos ϕ − (

x2,B − x2,A
)

sin ϕ
]2

149

+ 1

v2
2

[(
x1,B − x1,A

)
sin ϕ + (

x2,B − x2,A
)

cos ϕ
]2

. (2) 150

The reader is referred to the Supplementary Material 151

for the detailed derivation of equations in this section. 152

From (2), we observe that tAB is nonlinearly related to 153

anisotropic parameters m. When the orientation of the 154

symmetry axis is known, we obtain a linear relationship 155

between squared traveltimes t2 and squared slownesses 1/v2
1 156

and 1/v2
2 . 157
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A. Reflector-Based Experimental Setup158

This study considers an experimental setup that includes159

a reflector located opposite the linear ultrasound probe [see160

Fig. 1(b)], with the probe-reflector distance L controlled by161

a positioning frame and a distance sensor [4]. This setup162

has already been applied in various clinical studies for the163

assessment of breast [34], [35] and muscle tissue [12], [13],164

[31], [36]. The reflector allows us to measure first-arrival165

reflection traveltimes tSR of waves propagating from a source166

at xS to a receiver at xR. They can be expressed using Fermat’s167

principle as168

min
xP∈D

tSR(xP), where tSR(xP) = tSP(xP) + tPR(xP) (3)169

where D refers to the set of points xP at the reflector–tissue170

interface [see Fig. 1(b)], and traveltimes of each path are171

computed using (2).172

Unlike in isotropic media, the reflection point xmin
P for the173

minimum traveltime does not necessarily lie on the midpoint174

between xS and xR in anisotropic media. It is possible to175

show that the location of the reflection point generally satisfies176

xmin
P = ((x1,S + x1,R)/2 + δ, L), where δ is a constant value.177

That is, xmin
P is shifted from the source-receiver midpoint178

position by the same constant δ for every source-receiver179

combination. To find the value of δ, we consider, for simplicity,180

the zero-offset case in which xS = xR, and we solve (3) using181

dtSR

dx1,P

∣∣∣∣
xP=xmin

P

= 2
dtSP

dδ

∣∣∣∣
xP=xmin

P

= 0. (4)182

The reflection point is then183

xmin
P =

(
x1,S + x1,R

2
+ L sin 2ϕ

(
v2

2 − v2
1

)
2
(
v2

1 sin2 ϕ + v2
2 cos2 ϕ

) , L

)
. (5)184

This point is located at the source–receiver midpoint only185

when the medium is isotropic (v1 = v2) or the anisotropy sym-186

metry axis is aligned with our coordinate system (ϕ = 0◦). For187

muscle tissue, we expect v1 > v2 for ϕ ∈ [−π/4, π/4), i.e.,188

waves propagating faster along than across fiber direction [14].189

Therefore, δ can be either positive or negative depending on190

the sign of ϕ.191

Upon inserting (5) in (2) and (3), we can observe that192

the path with the minimum traveltime satisfies tSP(xmin
P ) =193

tPR(xmin
P ). Therefore, the fastest ray path is the path with194

equal traveltime along each segment. This also means that195

the mirror image of the receiver, namely a virtual equivalent196

receiver R̃ below the reflector satisfying tSR̃ = tSR, is located197

at xR̃ = 2(xmin
P − xS) + xS = 2xmin

P − xS. The first-arrival198

reflection traveltime between xS and xR is then199

t2
SR

(
xmin

P

) = d2

v2(θ = π/2)
+ 4L2v2(θ = π/2)

v2
1v

2
2

(6)200

with v2(θ = π/2) given by (1) and d = x1,R − x1,S being the201

source-receiver offset. This equation establishes the relation-202

ship between observations tSR and unknown muscle properties203

m = (v1, v2, ϕ). Thus, the forward problem considered in204

this study is nonlinear. When the anisotropy symmetry axis205

Fig. 2. Muscle models satisfying the conditions (8) and, thus, providing
equal traveltimes. For this example, we take the reference model �m =
(1560 m/s,1540 m/s, 0◦) and represent equivalent models m for ϕ ∈
[−45◦,45◦). Because muscle models are defined by three parameters,
we represent the anisotropy angle ϕ versus the velocity ratio v1/v2
for visualization. We only show models with velocities in the range of
[1300,1800] m/s.

is aligned with the coordinate system (ϕ = 0◦), (6) reduces to 206

t2
SR

(
xmin

P

) = d2

v2
1

+ 4L2

v2
2

(7) 207

and, as previously observed, t2
SR becomes linearly related to 208

squared slownesses 1/v2
1 and 1/v2

2 . It is important to note 209

that (5) and (6) are exact for any homogeneous media with 210

elliptical anisotropy. 211

B. Nonuniqueness 212

In this section, we demonstrate that traveltimes satisfy- 213

ing (6) are not sufficient to constrain muscle properties 214

uniquely. For notational brevity, we omit the dependence on 215

xmin
P from traveltimes. 216

Let us assume that we measure traveltimes t2
SR(m̂) in the 217

medium m̂. If t2
SR(m̂) is uniquely defined by m̂, then any 218

other m giving the same traveltimes t2
SR(m̂) = t2

SR(m) must 219

satisfy m̂ = m. For simplicity, we take m̂ = (v̂1, v̂2, ϕ̂ = 0◦) 220

and m = (v1, v2, ϕ) and consider a single source–receiver pair. 221

Equating (6) and (7), we see that both muscle parameters give 222

the same traveltimes when 223

v̂1v̂2 = v1v2 (8a) 224

v2
1 sin2 ϕ + v2

2 cos2 ϕ = v̂2
2 . (8b) 225

These conditions can be satisfied for m̂ �= m even when 226

we exclude the intrinsic periodicity of ϕ [i.e., m(ϕ) = 227

m(ϕ + π)] and the obvious symmetry of the elliptical 228

anisotropy (v1 → v2 when ϕ → ϕ + π/2). Thus, traveltimes 229

defined in (6) cannot uniquely constrain muscle anisotropy. 230

It is noted that multiple sources cannot resolve this nonunique- 231

ness because the conditions (8) do not depend on source and 232

receiver locations. As an example, Fig. 2 shows all equivalent 233

muscle models (in terms of traveltimes) to the reference model 234

m̂ = (1560 m/s, 1540 m/s, 0◦). We observe that specially the 235

parameter ϕ is unconstrained by the forward problem in (6). 236

Hence, we require additional types of observations. 237
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C. Reflector Inclination: Sources of Uncertainties as New238

Constraints239

The simplest way to constrain the anisotropy angle is by240

combining data acquired from multiple muscle sides. This is241

equivalent to rotating the tissue with respect to the probe.242

For in vivo studies, however, we can only access the muscle243

from a single side of the anisotropy plane. To circumvent244

this limitation, we suggest taking advantage of the reflector245

inclination, which is unavoidable in practice and regarded as246

a source of uncertainties [37]. A tilted reflector will gener-247

ate ray paths with orientations that are different from our248

previous setup. Therefore, we suggest combining data from249

multiple inclination angles to constrain muscle anisotropy.250

In the following, we assume that the inclination angle is251

controlled using, for instance, B-mode images, and we derive252

the corresponding forward problem.253

Let us denote α the reflector inclination angle with respect254

to the x1-axis, shown in Fig. 3(a). We can use our previous255

equations by rotating the whole setup to align the reflector with256

the x1-axis. In this situation, the anisotropy angle becomes257

ϕ → ϕ + α, the probe is inclined by α with respect to258

the x1-axis, and the vertical probe-reflector distance becomes259

L → L cos α [see Fig. 3(b)]. Using geometrical identities260

and the previous result in (5), the reflection point xmin
P =261

(xmin
1,P , L cos α) in the rotated system becomes262

xmin
1,P = dS cos α + L ′(d cos α + 2δ′)

2L ′ + d sin α
(9)263

with264

δ′ =
(
L ′ + d sin α

)
sin(2(ϕ + α))

(
v2

2 − v2
1

)
2
(
v2

1 sin2(ϕ + α) + v2
2 cos2(ϕ + α)

) (10)265

and266

L ′ = L cos α + dS sin α (11)267

where dS denotes the distance between the origin of the268

coordinate system (first element of the probe) and xS, and269

d is, as previously defined, the distance between xS and xR.270

We replace xmin
P in (2) and (3) to find the total traveltime271

t2
SR = d2

v2(π/2)
+ 4L ′(L ′ + d sin α

)
v2

1 sin2(ϕ + α) + v2
2 cos2(ϕ + α)

. (12)272

This equation is the generalization of (6), which we obtain273

when α = 0.274

D. Constraining Anisotropy Parameters275

In the following, we demonstrate that we can constrain276

the muscle anisotropy by combining traveltimes from dif-277

ferent reflector inclinations. Since (12) is the generalization278

of (6), we expect that traveltimes measured from a single279

reflector inclination show the same nonunique behavior as280

in Section II-B. Thus, we will first derive the equivalent281

models, in terms of traveltimes, to a reference model m̂ for an282

experiment with α �= 0◦. We then compare these models with283

those obtained for α = 0◦ [see (8)]. If combining traveltimes284

from these two experiments constrains muscle anisotropy, then285

Fig. 3. Schematic illustration showing two equivalent experimental
setups. (a) Our original setup considers the reflector inclined by α
with respect to the x1-axis. The vertical distance, i.e., the distance in
x2-direction, between the first transducer element (origin of the coordi-
nate system) and the reflector is L. The orientation of the anisotropy
symmetry axis is ϕ. (b) We rotate the whole system by α, with the
rotation center indicated in (a), to find an equivalent setup with no reflector
inclination. Now, the probe is inclined with respect to the x1-axis, the
anisotropy angle is ϕ + α, and the vertical probe-reflector distance
becomes L ���α.

the equivalent models for α �= 0◦ and α = 0◦ should overlap 286

in a single point equal to m̂. 287

Assume we measure the traveltimes t2
SR(m̂; α) from muscle 288

properties m̂ using the reflector inclination α. Following 289

the analysis in Section II-B, we can observe that different 290

muscle properties m �= m̂ can provide identical traveltimes 291

t2
SR(m; α) = t2

SR(m̂; α) using the same experimental setup. 292

Again, we take m̂ = (v̂1, v̂2, ϕ̂ = 0◦) and m = (v1, v2, ϕ) 293

and consider a single source–receiver pair for simplicity. 294

Using (12), we find that equivalent muscle parameters satisfy 295

the conditions 296

v̂2
1 = v2

1v
2
2

v2
1 sin2 ϕ + v2

2 cos2 ϕ
(13a) 297

v̂2
1 sin2 α + v̂2

2 cos2 α = v2
1 sin2 ϕα + v2

2 cos2 ϕα (13b) 298

where ϕα = ϕ +α. These conditions reduce to (8) for α = 0◦. 299

To understand the meaning of (13), we take the reference 300

model m̂ = (1560 m/s, 1540 m/s, 0◦), same as in Section II-B, 301

and represent models satisfying (13) for different values of 302

α, shown in Fig. 4. We observe that our reference model m̂ 303

is the only model in common for different reflector incli- 304

nations. This demonstrates that combining traveltimes from 305

different α can uniquely constrain muscle anisotropy. We also 306

observe that the sets of equivalent models differ more for 307

larger differences in α. Consequently, in the presence of 308

measurement noise, we expect to constrain the anisotropy 309

more accurately by combining traveltimes from setups with 310

larger inclination differences. In the extreme case where we 311

combine α = 0◦ and α = 90◦, observed traveltimes will 312

correspond to perpendicular ray paths that can measure muscle 313

anisotropy directly. However, a large reflector inclination will 314

deform muscle tissue considerably, changing its anisotropic 315

properties. We should therefore avoid large inclinations in 316

practice to minimize the realignment of fibers and obtain 317

consistent measurements. 318
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Fig. 4. Muscle models satisfying the conditions (13a) and providing same
traveltimes for reflector inclination angles α = 0◦, 10◦, and 20◦. For all α,
the reference model is �m = (1560 m/s,1540 m/s,0◦), and we represent
its equivalent models for ϕ ∈ [−45◦,45◦) and v�, v2 ∈ [1300, 1800] m/s.
The Supplementary Material includes the same figure with respect to v1
and v2 for clarity.

E. Validation With Numerical Simulations319

The derivations presented previously are sufficient to320

demonstrate that (12) is exact for homogeneous media with321

elliptical anisotropy. In this section, we confirm this with322

simulations that solve the wave equation numerically. We use323

the spectral-element solver Salvus [38] to model the wave324

propagation in muscle using the 2-D time-domain elastic wave325

equation with shear modulus equal to zero, i.e.,326

ρ∂2
t u(x, t) − ∇ · (D∇u(x, t)) = f (xS, t). (14)327

Here, f is the external source generated from xS, u is the328

scalar displacement potential, ρ is the muscle density, and329

D is a second-order symmetric positive tensor describing the330

direction-dependent velocities v. If the anisotropy is aligned331

with the coordinate system, D is a diagonal matrix with332

elements D11 = ρv2
1 and D22 = ρv2

2 . For tilted anisotropy,333

we apply the rotation matrix to derive the elements of D.334

To simulate the reflector-based experimental setup, we use a335

medium with two homogeneous layers representing the muscle336

and reflector. The muscle layer is elliptically anisotropic with337

density 1000 kg/m2. The reflector is isotropic with speed338

of sound 2670 m/s and density 1180 kg/m2, simulating a339

polymethylmethacrylate material [4]. The probe consists of340

128 transducer elements with 0.3-mm pitch. We use the first341

element to transmit a pulse of 2.5-MHz center frequency while342

all elements act as receivers. It is noted that our frequencies343

are lower than those typically used in linear probes to keep344

simulations computationally affordable.345

We illustrate the accuracy of our forward model in (12)346

using the muscle model m = (1560 m/s, 1540 m/s, 5◦),347

a probe-reflector distance of L = 8 cm, and reflector incli-348

nation angles α = 0◦ and α = 5◦. First-arrival reflection349

traveltimes are computed by cross-correlating recorded signals350

with a simulated calibration dataset in water (1515 m/s)351

using the same experimental setup. Fig. 5 compares travel-352

times measured from wave propagation simulations with those353

analytically modeled using (12). As expected, both examples354

Fig. 5. Comparison of simulated traveltimes from numerical wave
propagation simulations with those analytically modeled using (12). The
source is located at the first transducer element, and traveltimes are
represented with respect to the source–receiver offset. We used the
muscle model m = (1560 m/s,1540 m/s, 5◦), the probe-reflector distance
L = 8 cm, and reflector inclination anglesα = 0◦ andα = 5◦. Root mean
square errors are 8.10 ·10−10 s and 8.34 ·10−10 s for α = 0◦ and α = 5◦,
respectively.

show negligible differences between simulated and analytical 355

traveltimes demonstrating that (12) is exact. 356

III. TRAVELTIME SENSITIVITIES TO TISSUE ANISOTROPY 357

Partial derivatives of traveltimes with respect to different 358

anisotropy parameters contain valuable information on the 359

expected reconstruction accuracy. They reveal how sensitive 360

traveltimes are to changes in anisotropic parameters; thus, 361

we can analyze them to understand how well model parameters 362

can be constrained from specific traveltime observations. 363

So far, we have assumed that we can control the reflector 364

inclination angle, for instance, from B-mode images. However, 365

due to unknown tissue properties, this estimation will contain 366

uncertainties, and reconstruction algorithms should consider 367

α as another parameter to retrieve within m. Hence, we also 368

analyze the traveltime sensitivity with respect to α. 369

Since our forward problem is nonlinear, the sensitivities 370

depend on model parameters. Still, we can make interesting 371

observations by analyzing their values for the same model and 372

acquisition parameters used in Fig. 5 [see Fig. 6]. In this case, 373

traveltime sensitivities to v1 are approximately one order of 374

magnitude lower than the sensitivities to v2. This is caused by 375

the limited aperture of the ultrasound probe, as suggested by 376

the magnitude increase with the source-receiver offset. Increas- 377

ing the reflector inclination angle increases the components 378

of ray paths along x1-direction, and traveltimes become more 379

sensitive to v1. Similarly, the sensitivities to v2 weaken with 380

increasing the source-receiver offset and reflector inclination 381

angle. Accordingly, we expect higher uncertainties in the 382

estimation of v1 than v2 for ϕ < π/4. 383

Traveltime sensitivities to ϕ change substantially with α 384

compared to the changes with respect to the source-receiver 385

offset, suggesting a strong nonlinear relationship between 386

traveltimes and ϕ. This is not surprising, as traveltimes depend 387

on ϕ through trigonometric functions. The magnitude of these 388

sensitivities in Fig. 6 is therefore difficult to interpret. Finally, 389



6 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL

Fig. 6. Sensitivities of traveltimes to velocities along (v1) and across (v2) the anisotropy symmetry axis, the orientation of this axis (ϕ), and the
reflector inclination angle (α), respectively. The sensitivities are shown as a function of the source-receiver offset to illustrate its variability. We consider
the same anisotropy and acquisition parameters as in Fig. 5.

we observe that traveltimes are highly sensitive to α, with390

values approximately four orders of magnitude larger than391

those for v1. It means that traveltimes are very informative392

about the reflector inclination angle, which we expect to393

retrieve with high accuracy.394

IV. STATISTICAL INVERSE PROBLEM395

Estimating muscle anisotropy from traveltime observations396

involves solving a nonlinear inverse problem. In principle,397

we can formulate this as a gradient-based optimization prob-398

lem to search for the model m that minimizes the misfit399

between observed traveltimes dobs and predicted traveltimes400

d [39]. Such deterministic approaches, however, cannot guar-401

antee that the solution corresponds to the global minimum402

of the nonlinear function we try to minimize. They are also403

incapable of accurately estimating uncertainties in the solution404

caused by measurement noise, limited data coverage, and405

inaccurate forward modeling [40]. In this study, our goal is406

to analyze the feasibility of estimating the speed-of-sound407

anisotropy from traveltime observations. For this analysis,408

quantifying uncertainties is crucial; thus, we address the inver-409

sion statistically using the Bayesian framework. The solution410

is a posterior probability density function (pdf) πpost(m|dobs)411

that contains the complete statistical description of model412

parameters [39], [40].413

According to Bayes’ theorem [41], [42], the posterior pdf414

satisfies415

πpost(m|dobs) = k πprior(m)πlike(dobs|m) (15)416

where k is an appropriate normalization constant, πprior(m)417

encodes our prior information on m, and the data likelihood418

πlike(dobs|m) is the conditional probability of having obser-419

vations dobs given the model m. We can express the data420

likelihood explicitly as421

πlike(dobs|m) ∝ exp

[
−1

2
(d − dobs)

T�−1
n (d − dobs)

]
(16)422

where d = F(m) is the forward problem in (12), and �n423

is the noise covariance matrix describing normally distributed424

uncertainties in observations. Here, we assume that traveltimes425

are measured using reflector delineation techniques suggested426

in the literature [4], [43]. These techniques were developed427

to measure the traveltimes of waves propagating from single-428

element emitters, the same observables as in our case. Since429

traveltimes vary smoothly between adjacent receivers, delin- 430

eation approaches incorporate this prior knowledge to remove 431

outliers, minimizing large measurement errors. 432

In principle, the prior πprior(m) can take any form. We can 433

generally express it in terms of individual model parameters 434

mi as 435

πprior(m) =
N∏

i=1

πprior(mi ) (17) 436

where N is the number of parameters in m. In this study, 437

we use either a uniform distribution between a fixed range of 438

values, i.e., 439

πprior(mi) =
{

1
mmax

i −mmin
i

, if mi ∈ [
mmin

i , mmax
i

]
0, otherwise

(18) 440

or a Gaussian distribution 441

πprior(mi) = 1√
2πσi

exp

[
−

(
mi − m0

i

)2

2σ 2
i

]
(19) 442

with mean m0
i and standard deviation σi . We consider broad 443

uniform priors for velocities and anisotropy angle. Such priors 444

are relatively uninformative, simulating a scenario with little 445

previous knowledge about the medium. While we could use 446

more sophisticated forms of prior, for instance, including 447

correlations between anisotropic parameters, the uniform prior 448

allows us to understand better the constraints imposed by the 449

traveltime data. When reflector inclination angles are consid- 450

ered part of m, we use Gaussian priors for these parameters. 451

Here, we assume that approximate values of inclination angles 452

are available from B-mode images. 453

The posterior allows us to extract useful statistical infor- 454

mation about muscle anisotropic parameters. For instance, 455

we can compute the probability of m satisfying certain 456

conditions M1 of clinical interest as P(m ∈ M1) = 457∫
M1

πpost(m|dobs)dm. This probability can be relevant in clin- 458

ical decision-making when disease-related thresholds exist for 459

anisotropic parameters. Other statistical quantities such as the 460

expectation or marginal pdfs are also computed via similar 461

integrals. 462

Unless the forward problem is linear, and the prior and 463

noise are Gaussian, analytical expressions of the posterior are 464

not available [39], [44]. Still, it is possible to approximate 465

the statistical information contained in the posterior using 466
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Fig. 7. Posterior pdf related to the unconstrained forward problem in (6).
We consider 32 sources equidistantly located and the source-reflector
distance L = 8 cm. Models with highest pdf correspond to theoretically
predicted ones in Fig. 2 (dashed line). They explain equally well the
traveltimes computed from the true model (red star).

efficient sampling techniques. In this study, we employ the467

Metropolis-Hastings Markov chain Monte Carlo (MCMC)468

algorithm [45]–[47]. The algorithm generates an ensemble469

of random samples of the posterior with sampling density470

proportional to πpost(m|dobs). We can use this ensemble to471

approximate integrals related to our statistical quantities of472

interest.473

V. NUMERICAL EXAMPLES474

In this section, we show numerical examples illustrating the475

nature of the anisotropy estimation problem. Our objectives are476

threefold: 1) show the role of the reflector inclination in con-477

straining anisotropy parameters; 2) investigate the robustness478

of the problem under uncertain inclination angles and a mist-479

mach in probe-reflector distance between measurements; and480

3) understand the impact of the experimental setup, anisotropy481

properties, and measurement noise on solution uncertainties.482

All examples shown here consider a uniform prior483

for velocities and anisotropy angle within the range of484

[1300 m/s, 1800 m/s] and [−45◦, 45◦), respectively. As in485

Section II-E, we use an ultrasound probe with 128 transducer486

elements and 0.3-mm pitch. We consider every fourth element487

acting as a source sequentially (a total of 32 sources) while488

all elements are in receiving mode. Following reported values489

in [43], where the authors compare annotated first-arrival490

reflection traveltimes with those estimated from reflector delin-491

eation approaches, we assume Gaussian observational errors492

with a standard deviation of 0.1% of maximum traveltimes.493

To ensure convergence and correctly interpret the statistical494

results, we explore the posterior with a relatively large number495

of random samples, O(107), although fewer samples could496

suffice for practical purposes.497

A. Unconstrained Problem498

In this example, we solve the Bayesian anisotropy inference499

using the forward problem in (6). Our goal is to illustrate500

how the nonuniqueness of the forward problem is mapped501

into the posterior. We consider the same example as in Fig. 2,502

where the true model is mtrue = (1560 m/s, 1540 m/s, 0◦),503

and the probe-reflector distance is L = 8 cm. Our artificial 504

observations of traveltimes are numerically computed from (6) 505

and collected in the vector dobs, which contains a total of 506

32 × 128 traveltimes. Fig. 7 shows the solution of the inverse 507

problem, namely the posterior pdf. Models with maximum 508

posterior probability densities are same as those theoretically 509

predicted in Fig. 2 and explain the observations equally likely. 510

This example demonstrates moreover that including multiple 511

sources does not improve the nonuniqueness of (6), as previ- 512

ously noted. Unless our prior is stronger than a uniform distri- 513

bution, the posterior will show the exact same nonuniqueness 514

of the forward problem. In this example, however, a stronger 515

prior would dominate the solution. For instance, a Gaussian 516

prior would produce a maximum a posteriori point at the same 517

location of the prior’s maximum, which may not represent 518

the true model. Hence, one should carefully interpret the 519

posterior when the data are not informative enough on model 520

parameters. 521

B. Constrained Problem 522

We illustrate here how the problem can be constrained by 523

combining data from multiple reflector inclinations. We con- 524

sider the same true model and acquisition setup as in the 525

previous example. Now, our artificial observables are 2×32× 526

128 traveltimes obtained with reflector inclination angles α = 527

0◦ and α = 5◦ using (12). Fig. 8(a) shows the posterior pdf for 528

this case, which has a unique maximum that matches the true 529

model location. Unlike the previous example, now traveltimes 530

are able to constrain a unique set of model parameters. We can 531

quantify uncertainties in the solution using marginal pdfs 532

for each model parameter, shown in Fig. 8(b). Although the 533

problem is nonlinear, the posterior pdf approximates a mul- 534

tivariate Gaussian distribution. We thus express the solution 535

using the mean and standard deviation of the Gaussian fit of 536

the marginals, which is useful to quantify uncertainties. Mean 537

values accurately predict true model parameters with standard 538

deviations less than 1.62 m/s for velocities and 0.61◦ for the 539

anisotropy angle. As predicted in Section III, we observe that 540

v1 is less constrained than v2 due to the limited aperture of 541

the probe. 542

C. Uncertain Reflector Inclination 543

In Section III, we observed that traveltimes are highly 544

sensitive to the reflector inclination angle. As a result, if we 545

use inaccurate values of α in the forward problem, we may 546

expect meaningless solutions. This is illustrated in Fig. 9(a), 547

where we consider the same example as before but with 548

errors of 5◦ in reflector inclination angles. That is, we fix 549

the values of α as 5◦ and 10◦ instead of 0◦ and 5◦ to 550

invert anisotropy parameters. The marginal pdfs show that 551

reconstructed parameters deviate strongly from the true values. 552

Their mean values provide a model with a negative log- 553

posterior value of 2.74e5, meaning that there is a substan- 554

tial mismatch between observed and predicted traveltimes. 555

To circumvent this issue, we suggest extending the Bayesian 556

formulation by including inclination angles as unknown model 557

parameters, i.e., m = (v1, v2, ϕ, α1, α2). This also allows 558
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Fig. 8. (a) Posterior pdf when traveltimes from two different reflector inclinations (0◦ and 5◦) are considered. We use the same true model (red star)
and acquisition setup as in Fig. 7. Unsampled models by the algorithm are shown as white areas. The posterior has a unique maximum indicating that
model parameters are well constrained by the traveltimes. (b) Marginal pdfs for v1, v2, and ϕ, respectively. The marginals are histograms obtained
with the MCMC algorithm and represent the sampling frequency of the values for each model parameter. The solution for each parameter is given
in terms of the mean and standard deviation, shown on top of the histograms. The velocity across fibers (v2) is better constrained than the velocity
parallel to fibers (v1).

us to incorporate in the prior pdf our rough estimations559

and uncertainties of α1 and α2. To be consistent with the560

previous example, we assume Gaussian priors with means at561

5◦ and 10◦ and a standard deviation of 3◦. That is, we shift562

Gaussian means by 5◦ from true values, with a standard563

deviation that excludes the true values from most probable564

setups. Although derivations provided in Section II-D are565

not sufficient to demonstrate the solution uniqueness in this566

case, the marginal pdfs shown in Fig. 9(b) (in gray) have567

a clear, unique maximum for each parameter. We show in568

the Supplementary Material that different MCMC realizations569

converge to the same posterior pdf, suggesting that the solution570

uniqueness is still given within the model subspace defined by571

the priors. The model based on mean values of marginal pdfs572

has a negative log-posterior value of 15.11; thus, it predicts573

observed traveltimes accurately. This result demonstrates that574

the anisotropy estimation is robust against uncertainties in575

reflector inclinations when the extended Bayesian formulation576

is used. The most sensitive parameters are v2 and ϕ, with577

uncertainties that increase more than two times compared to578

those in Fig. 8. Furthermore, the posterior provides accurate579

values for α1 and α2, despite the substantial deviations between580

their prior means and true values. This indicates that the data581

likelihood is sufficiently informative about reflector inclination582

angles, as already observed in Section III. Thus, one should583

always consider reflector inclination angles as model parame-584

ters to retrieve meaningful anisotropy parameters.585

D. Probe-Reflector Distance Mismatch586

In practice, varying the reflector inclination angle between587

measurements could alter the probe-reflector distance.588

To understand how this affects the inversion and particularly589

the uniqueness of the forward problem, we consider the590

same example as before, but with traveltimes measured using591

L = 8 cm for α1 and L = 7 cm for α2. The marginal 592

pdfs obtained in this case are shown in pink in Fig. 9(b). 593

Compared to our previous example, the solution is almost 594

unaffected. Again, the mean values correctly represent the true 595

model. However, the anisotropy angle becomes slightly more 596

uncertain, whereas the standard deviation of v1 is reduced. 597

The reduced probe-reflector distance may explain the latter. 598

In this case, the components of ray paths along v1-direction are 599

increased, constraining the parameter better. This result shows 600

that a correct solution is still guaranteed when a mismatch in 601

L exists between different reflector inclinations. 602

E. Impact of Experimental Setup, Anisotropy Properties, 603

and Data Noise 604

Previous results suggest that experimental conditions influ- 605

ence the uncertainties of retrieved parameters. Here, we ana- 606

lyze these effects more in detail when the following five 607

aspects are modified separately: the probe-reflector distance 608

L, the true anisotropy angle ϕtrue, the true velocity differences 609


vtrue = v1,true − v2,true, the reflector inclination angle α2,true 610

while α1,true = 0◦, and the standard deviation of obser- 611

vational errors σnoise. All examples consider the reference 612

model mtrue = (1560 m/s, 1540 m/s, 0◦, 0◦, 5◦), and distance 613

L = 8 cm, same as in previous examples. Fig. 10 shows 614

how the standard deviations of inverted model parameters 615

vary in each case. As observed before, uncertainties in v1 616

decrease when ray paths become closer to v1-direction, either 617

by decreasing L [see Fig. 10(a)] or by increasing the ϕtrue 618

[see Fig. 10(b)]. The latter also increases uncertainties in 619

v2 due to the opposite effect of ray paths in this case. As a 620

result, both velocities would be equally constrained when 621

ϕtrue = 45◦. Interestingly, varying 
vtrue [see Fig. 10(c)] or 622

α2 [see Fig. 10(d)] do not affect v1 and v2, but ϕ becomes 623



KORTA MARTIARTU et al.: TOWARD SPEED-OF-SOUND ANISOTROPY QUANTIFICATION IN MUSCLE 9

Fig. 9. Marginal pdfs of model parameters. We use the true model mtrue = (1560 m/s,1540m/s, 0◦) and reflector inclination angles 0◦ and 5◦
to generate artificial observables. (a) Inversion includes an error of 5◦ in reflector inclinations. As a result, anisotropy parameters with the highest
probabilities deviate strongly from true values (negative log-posterior: 2.74e5). (b) Inversion considers reflection inclination angles α1 and α2 as
model parameters to retrieve. Inclination angles have Gaussian priors with their mean shifted 5◦ from true values and 3◦ standard deviation. In gray,
we show results when probe-reflector distance L is 8 cm, same as in (a). The solution for each parameter is given in terms of the mean and standard
deviation, shown on top of histograms. Mean values of marginals accurately predict true anisotropy parameters (negative log-posterior: 15.11).
In pink, we show results when we use L = 8 cm for α1 and L = 7 cm for α2. A mismatch in L between measurements has no significant effects, and
the correct solution is still guaranteed.

less constrained when these are small. The effect with 
vtrue624

is related to the forward problem in (12), which shows that625

traveltimes become independent of ϕ when the medium is626

isotropic. Therefore, we expect larger uncertainties in ϕ when627

approaching isotropic conditions. The effect with α2, on the628

other hand, is related to the nonuniqueness of the forward629

problem. As analyzed in Fig. 4, model parameters are more630

difficult to constrain as differences between α1 and α2 become631

smaller. When α1 = α2, the problem is nonunique, and ϕ632

cannot be constrained, explaining the large uncertainties in633

ϕ when α2 → 0. In all these cases, standard deviations of634

reflector inclination angles remain constant, suggesting that635

they are nearly uncorrelated to other model parameters.636

In general, we observe that the method is capable of 637

accurately distinguishing velocity differences larger than 4 m/s 638

when observational errors are 0.1% of maximum travel- 639

times [43]. This is substantially smaller than velocity dif- 640

ferences in muscle reported in the literature (>10 m/s) 641

[14]–[17]. Fig. 10(e) shows, however, that parameter uncer- 642

tainties will increase linearly with σnoise. Still, we could distin- 643

guish velocity differences larger than 10 m/s for σnoise ≤ 0.2%, 644

which is a considerable increase in noise. Note moreover 645

that uncertainties could be reduced by including more sources 646

in our examples. Therefore, the method presented here has 647

the potential to provide accurate and statistically meaningful 648

muscle anisotropy estimates in future clinical applications. 649
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Fig. 10. Standard deviations of model parameters as a function of experimental setup, medium properties, and standard deviation of noise. The
reference model and experimental parameters (pink circles) are mtrue = (1560 m/s, 1540 m/s,0◦, 0◦,5◦) and L = 8 cm, respectively. We modify
(a) probe-reflector distance L from 4 to 12 cm, (b) true anisotropy angle ϕtrue from 0◦ to 40◦, (c) true velocity differences Δvtrue = v1,true − v2,true
from 10 to 30 m/s, (d) reflector inclination angle α from 2.5◦ to 12.5◦, and (e) standard deviation of traveltime observations from 0.05% to 0.2% of
maximum traveltimes. In general, we can distinguish velocity differences larger than 4 m/s when the standard deviation of noise is 0.1%, as reported
in [43].

VI. DISCUSSION AND CONCLUSION650

This article presents a novel method to estimate the speed-651

of-sound anisotropy in transversely isotropic tissue. Until652

now, only shear waves have been used to characterize tissue653

anisotropy in clinical applications [22], [23], [25], [26], [30],654

[48], [49]. However, shear and longitudinal waves interro-655

gate fundamentally different mechanical tissue properties [28].656

Their propagation velocities differ by three orders of mag-657

nitude, resulting in decoupled relationships between the two658

velocities and elastic moduli [31]. Hence, our work not only659

complements other studies on the topic but is pivotal to660

characterize mechanical tissue properties comprehensively.661

Due to the lack of previous works on tissue speed-of-662

sound anisotropy imaging, our work focuses on developing663

simplified models that provide an essential theoretical basis664

to understand the nature of the problem. In this respect,665

we target the average tissue anisotropy by modeling muscles666

as homogeneous media. Rather than being intrinsic, muscle667

anisotropy is caused by fine-scale heterogeneities in medium668

properties (fibers), which we implicitly consider in our for-669

mulation. However, local large-scale heterogeneities may also670

influence the average anisotropy estimates, hindering their671

interpretation. While being beyond the scope of this article,672

one could use the effective medium theory to establish the673

link between heterogeneities and anisotropy [50], [51]. From674

a clinical interest perspective, this link is key to correlating675

anisotropy parameters to muscle composition and architecture,676

which are affected by musculoskeletal disorders. For instance,677

a change in the number and type of fibers is expected to678

lead to changes in the average muscle anisotropy. Therefore,679

quantifying this property with ultrasound could ultimately 680

provide a cost-efficient, multiparametric biomarker to assess 681

disease-related changes in muscle mass and function. 682

The method presented here relies on an experimental setup 683

that includes a reflector parallel to the linear probe, with a sen- 684

sor controlling their distance. This setup can be easily imple- 685

mented in conventional ultrasound systems and has already 686

been successfully applied in various clinical studies [12], [13], 687

[31], [34]–[36]. Yet, it differs from those suggested for shear- 688

wave anisotropy estimation, which requires either 2-D matrix- 689

array probes [23], [25], [49] or the rotation of linear probes 690

around the axial direction [22], [26], [30], [48]. This difference 691

in setups is a consequence of approximately perpendicular 692

propagation directions of typically excited ultrasound shear 693

and longitudinal waves. In any case, quantifying anisotropy of 694

any kind will require redesigning current ultrasound systems. 695

The reflector-based setup allows us to measure arrival 696

times of echoes reflected at known distances from the 697

probe. One of the most important results of our work is to 698

show that these traveltimes and anisotropy parameters are 699

nonuniquely related. We demonstrate that anisotropy can be 700

constrained nevertheless by combining measurements from 701

different reflector inclinations. An inclination in the reflector 702

is unavoidable in practice and conventionally regarded as 703

a source of unwanted noise. Here we have resignified its 704

value and transformed it into a key ingredient for success- 705

fully estimating anisotropy. Importantly, we show that two 706

reflector inclinations with relatively small angle differences 707

are sufficient to constrain anisotropy accurately. This facil- 708

itates the data acquisition procedure and avoids significant 709
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muscle deformation that could lead to changes in anisotropic710

properties.711

Traveltimes and anisotropy parameters are nonlinearly712

related; accordingly, we solve the inverse problem using713

Bayesian inference. Compared to gradient-based optimization714

techniques, our choice is computationally more demanding715

and may not suit clinical time constraints. However, it is a716

powerful approach to quantify uncertainties, crucial for clinical717

decision-making. In the current implementation, we sample718

the posterior using the Metropolis-Hastings algorithm, which719

evaluates approximately 105 models per minute on a single720

CPU from a laptop computer with 15%–20% acceptance rate.721

This algorithm is known to have a poor acceptance rate,722

meaning that a large number of samples is needed to approxi-723

mate the posterior sufficiently well [52]. The performance can724

be significantly improved by incorporating information from725

derivatives of the log posterior through Hamiltonian Monte726

Carlo methods [52], [53]. In this way, we can guide the727

sampler toward high-probability regions of the model space,728

making the inversion computationally more attractive.729

Since traveltimes are highly sensitive to reflector inclination730

angles, small angular errors in the forward problem will731

translate to incorrect anisotropy estimates. We suggest tackling732

this by considering reflector inclination angles as parameters733

to invert. Although we could similarly include the probe-734

reflector distance as another unknown parameter, we consider735

its uncertainties negligible, following reported values (5 μm)736

in similar works [4]. Under this formulation, our examples737

show that uncertainties in velocity estimates are sufficiently738

low to significantly distinguish velocity differences typically739

observed in muscle tissue (>10 m/s) [14]–[17]. As suggested740

by Fig. 10(e), the validity of this conclusion closely depends741

on the level and nature of observational errors, which in742

turn depend on the applied traveltime estimation technique.743

Here we assume normally distributed noise, which may be744

justified when large measurement errors are minimized by:745

1) carefully selecting time intervals of expected first-arrival746

reflection traveltimes and 2) avoiding outliers due to cycle747

skips. We can satisfy these conditions with traveltime esti-748

mators based on reflector delineation approaches, commonly749

employed for speed-of-sound tomography [4], [43]. They750

are designed to remove outliers by including information on751

the expected reflector depth and forcing smooth traveltime752

variations between adjacent sensors. However, our study does753

not consider other sources of errors that may arise in practice754

(e.g., poor tissue-reflector coupling). Thus, to better understand755

the clinical potential of our method under realistic condi-756

tions, a Bayesian formulation integrating comprehensively and757

empirically characterized observational errors is required.758

For nonlinear problems, the posterior pdf depends on the759

anisotropy model. Still, we can draw some general conclusions760

about uncertainties in inferred anisotropy parameters.761

1) Velocities in directions more parallel to the probe762

(i.e., fiber direction) are generally less constrained than763

those in perpendicular directions due to the limited764

aperture of the acquisition setup.765

2) The anisotropy angle ϕ is the least constrained para-766

meter with relative uncertainties that are two orders767

of magnitudes larger than those for velocities. In fact, 768

ϕ becomes increasingly unreliable as velocity differ- 769

ences approach isotropic conditions or the difference 770

between reflector inclination angles becomes very small. 771

Yet, such uncertainties do not affect velocity estimates, 772

which encode more relevant information about tissue 773

anisotropy. 774

3) Overall, the largest standard deviations in ϕ (3◦) are sub- 775

stantially smaller than those reported in similar numer- 776

ical studies with shear waves (5.6◦–36.3◦) [23]. Maxi- 777

mum relative errors in velocities are also considerably 778

lower in our case (0.2% versus 20%) [23]. It suggests 779

that quantifying anisotropy in longitudinal waves could 780

potentially be more robust than in shear waves. 781

APPENDIX A 782

ELLIPTICAL ANISOTROPY 783

This appendix discusses the elliptical anisotropy assumption 784

in muscle and shows the conditions under which (1) is 785

satisfied. The wave surface given by (1) is an ellipsoid only if 786

the slowness (reciprocal of the phase velocity) surface is also 787

an ellipsoid [32], [54]. We therefore focus on analyzing the 788

expression for phase velocity. 789

For simplicity, we consider a transversely isotropic medium 790

with the symmetry axis parallel to x1-direction. The elastic 791

stiffness tensor ci jkl characterizing this medium has five inde- 792

pendent components, which are c1111 ≡ c11, c1122 ≡ c12, 793

c2222 ≡ c22, c2323 ≡ c44, and c1212 ≡ c66 in Voigt notation. 794

The parameters c44 and c66 are related to shear moduli; thus, 795

in soft tissue, c44, c66 � c11, c12, c22 [29]. We can relate the 796

stiffness tensor to phase velocities V through the Christoffel 797

equation 798

det
[
ci jkl ni nl − ρV 2δ jk

] = 0 (20) 799

where the Einstein summation convention is implied for 800

repeated indices. Here, ρ denotes medium density, the Kro- 801

necker delta δ jk is equal to one when j = k and zero 802

otherwise, and ni refers to the i th component of the wavefront 803

normal vector (slowness vector). By considering a 2-D prob- 804

lem defined in the x1x2 plane and taking an arbitrary wavefront 805

direction n = (sin φ, cos φ), (20) leads to 806

V 2(φ) = 1

2ρ

[
c11 sin2 φ + c22 cos2 φ + G(φ)

]
(21) 807

for longitudinal waves, with 808

G(φ) =
[(

c11 sin2 φ − c22 cos2 φ
)2 + c2

12 sin2 2φ
] 1

2
. (22) 809

The elliptical anisotropy assumption is only valid when 810

the slowness surface in (21) is an ellipse, which is gener- 811

ally not the case. Only when the medium satisfies c12 = 812

(c11c22)
1/2, (21) reduces to the ellipse 813

V 2(φ) = 1

ρ

[
c11 sin2 φ + c22 cos2 φ

]
(23) 814

with semiaxes (ρ/c11)
1/2 and (ρ/c22)

1/2. In muscle tissue, 815

empirical studies have shown that c12 ≈ (c11c22)
1/2 [29], [55], 816

with reported deviations that are below 0.3%. This justifies the 817

elliptical anisotropy model used in this study. 818
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