

UniversitätsSpital Zürich

Physics of Clinical Ultrasound

Naiara Korta Martiartu

Postdoctoral researcher

Institute of Diagnostic and Interventional Radiology

January 2021

Wave physics: basics

Ultrasound waves

Mechanical waves: they need a medium to be propagated

Sound waves: Pressure field (compression and rarefaction)

Longitudinal wave: oscillations of particles along the propagation direction

©L.Perera

Energy transfer without transferring matter

Ultrasound waves

Mechanical waves: they need a medium to be propagated

Sound waves: Pressure field (compression and rarefaction)

Longitudinal wave: oscillations of particles along the propagation direction

©L.Perera

Energy transfer without transferring matter

Frequency, speed, and wavelength

Frequency (f): oscillation cycles per second (property of the source) [Hertz, Hz = 1/s]

Speed (c): The speed of propagation of sound waves (property of the medium) [m/s]

Wavelength (λ): Distance between two similar points on successive waves [m]

Frequency, speed, and wavelength

Frequency (f): oscillation cycles per second (property of the source) [Hertz, Hz = 1/s]

Speed (c): The speed of propagation of sound waves (property of the medium) [m/s]

Wavelength (λ): Distance between two similar points on successive waves [m]

Related to spatial resolution of ultrasound images

Most common in medical: 2–15 MHz

[El-Baba et al., 2020]

Material	c (m s⁻¹)
Liver	1578
Kidney	1560
Amniotic fluid	1534
Fat	1430
Average tissue	1540
Water	1480
Bone	3190-3406
Air	333

[Hoskins et al., 2010]

Most common in medical: 2–15 MHz

[El-Baba et al., 2020, Hoskins et al., 2010]

Material	<i>c</i> (m s ^{−1})
Liver	1578
Kidney	1560
Amniotic fluid	1534
Fat	1430
Average tissue	1540
Water	1480
Bone	3190-3406
Air	333

Most common in medical: 2–15 MHz

[El-Baba et al., 2020, Hoskins et al., 2010]

Material	<i>c</i> (m s ^{−1})
Liver	1578
Kidney	1560
Amniotic fluid	1534
Fat	1430
Average tissue	1540
Water	1480
Bone	3190-3406
Air	333

Most common in medical: 2–15 MHz

Wavelength: 0.1 - 0.8 mm

Ability to distinguish two closely spaced targets

[El-Baba et al., 2020, Hoskins et al., 2010]

[https://icurevisited.com/lus/]

Trade-off: resolution - penetration depth

Attenuation linear with frequency.

>> Tissues with higher water content: lower absorption>> Tissues with higher protein content: higher absorption

Trade-off: resolution - penetration depth

Attenuation linear with frequency.

>> Tissues with higher water content: lower absorption>> Tissues with higher protein content: higher absorption

Higher frequency:

- Shorter wavelength
- Better resolution
- Smaller penetration

Image formation

[Hoskins et al., 2010, https://onscale.com]

B-mode image formation

Ultrasound waves propagate through the tissue. Echoes occur with heterogeneities

1

B-mode image formation

Ultrasound waves propagate through the tissue. Echoes occur with heterogeneities

We assume constant velocity (c = 1540 m/s) and transform each time to a position in space.

B-mode image formation

Ultrasound waves propagate through the tissue. Echoes occur with heterogeneities

We assume constant velocity (c = 1540 m/s) and transform each time to a position in space.

The image is built up line by line

Final B-mode image (brightness)

[Hoskins et al., 2010]

Image artifacts

Underlying assumptions: Uniform attenuation Constant velocity Single scattering

Attenuation and reflection artifacts

Increased through transmission

Less attenuating structure. Decreased acoustic impedance.

More transmission

E.g., Cysts or veins

Acoustic shadowing

E.g., tumors, calcifications, or foreign bodies

Strongly absorbing or reflecting structure. Increased acoustic impedance.

Little transmission

Reverberation artifact: comet tail

[Moshavegh et al., 2016]

Mirror image artifact

[Baad et al., 2017]

Refraction artifact

Duplicated

[Baad et al., 2017]

Speed of sound artifact

[Baad et al., 2017]

Doppler Ultrasound

It is primarily used to study blood flow and myocardial motion

Doppler effect

Used to detect the motion of blood and tissue

Doppler effect: change in observed frequency compared to the emitted frequency due to the relative motion between the observer and the source.

The Doppler Effect

[Kaproth-Joslin, 2015]

0

Doppler Shift frequency (f_d)

Angle between US beam

[Turns, 2011]

Color Doppler

Presence of blood flow within a large area of the tissue.

Spectral Doppler

Changes in velocity over time within a single small area.

[Source: Asbjorn Støylen]

[Source: Asbjorn Støylen]

UniversitätsSpital Zürich

Physics of Clinical Ultrasound

Naiara Korta Martiartu

Postdoctoral researcher Institute of Diagnostic and Interventional Radiology January 2021

naiara.kortamartiartu@usz.ch

References:

Source of ultrasound waves

Spatial resolution: Focusing

Adjusting the focusing point to improve lateral resolution

Focusing in transmission

Focusing in reception

[Amo-Wiafe and Badu-Peprah, 2018]

Transducer arrays – field of view

Phased array

~15 to 20 adjacent elements simultaneously activated

All transducer elements simultaneously activated

Resolution versus depth Axial resolution Lateral resolution **Axial resolution** Dense beam region, is constant along high lateral resolution the beam. It depends on the frequecy of the ultrasound wave Beams diverge and lateral resolution decreases

[https://www.cirsinc.com/]

A-, B-, M-mode

[Motion] [Brightness] [Amplitude]

Time