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Ultrasound computed tomography (USCT) is an emerging modality to image the acoustic proper-

ties of the breast tissue for cancer diagnosis. With the need of improving the diagnostic accuracy of

USCT, while maintaining the cost low, recent research is mainly focused on improving (1) the

reconstruction methods and (2) the acquisition systems. D-optimal sequential experimental design

(D-SOED) offers a method to integrate these aspects into a common systematic framework. The

transducer configuration is optimized to minimize the uncertainties in the estimated model parame-

ters, and to reduce the time to solution by identifying redundancies in the data. This work presents

a formulation to jointly optimize the experiment for transmission and reflection data and, in particu-

lar, to estimate the speed of sound and reflectivity of the tissue using either ray-based or wave-

based imaging methods. Uncertainties in the parameters can be quantified by extracting properties

of the posterior covariance operator, which is analytically computed by linearizing the forward

problem with respect to the prior knowledge about parameters. D-SOED is first introduced by an

illustrative toy example, and then applied to real data. This shows that the time to solution can be

substantially reduced, without altering the final image, by selecting the most informative measure-

ments. VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5122291

[BET] Pages: 1252–1264

I. INTRODUCTION

Ultrasound computer tomography (USCT) is a promis-

ing imaging technique for breast cancer screening.

Ultrasonic waves are propagated through the tissue and

recorded by a set of transducers that are surrounding the

breast. The experiment collects transmission and reflection

data, which are then used to obtain quantitative images of

acoustic tissue properties. These properties, which include

speed of sound, density, reflectivity, and attenuation, are use-

ful for characterizing and classifying the breast tissue. In

particular, they allow us to differentiate tumors from benign

lesions (Greenleaf et al., 1977; Stavros et al., 1995).

In the last decade, USCT has emerged as an active field of

research (Gemmeke and Ruiter, 2007; Ozmen et al., 2015;

P�erez-Liva et al., 2017; Pratt et al., 2007; Roy et al., 2010;

Sandhu et al., 2015; Wiskin et al., 2012). The main challenge

addressed by the current studies is to provide a diagnostic tool

with high accuracy (comparable to MRI) and affordable com-

putational and acquisition cost for clinical practice (e.g., Ihrig

and Schmitz, 2018; Matthews et al., 2017; Taskin et al., 2018;

Wang et al., 2014). This trade-off can be controlled by the

choice of the reconstruction method as well as the setup of the

scanning device. Addressing these aspects in a systematic man-

ner will be the main focus of the present study.

Acoustic properties of the tissue are commonly recon-

structed using ray-based approaches (Dapp et al., 2011;

Hormati et al., 2010; Li et al., 2009; Stotzka et al., 2005).

This includes, for instance, B-mode technique and time-of-

flight tomography for reflection and transmission informa-

tion, respectively. Based on the infinite-frequency approxi-

mation, they offer a valid solution for high frequency data

(1–5 MHz), while being computationally efficient and

robust. Whereas the B-mode can provide accurate reflection

images, transmission images often suffer from limited spatial

resolution. To improve this, tomographic methods relying on

more accurate wave propagation models have been intro-

duced (Andr�e et al., 2013; Lavarello and Hesford, 2013).

Among these techniques, waveform tomography methods

have shown the most promising results in terms of spatial

resolution and contrast (Goncharsky et al., 2016; Ozmen

et al., 2015; Pratt et al., 2007). However, new challenges

arise: (1) The computational burden increases significantly

with respect to ray-based approaches, especially for high fre-

quencies or 3 D reconstructions and (2) the optimization

problem becomes highly non-linear. Adapted acquisition

systems that provide cost-effective designs and low-

frequency data are therefore essential to both alleviate the

cost and ensure meaningful solutions (Bunks et al., 1995;

Fichtner, 2010; Gauthier et al., 1986).

During the last decade, several transducer setups have

been investigated, ranging from circular to semi-ellipsoidal dis-

tributions (Camacho et al., 2012; Duric et al., 2014; Johnson

et al., 2007; Liu et al., 2018; Ruiter et al., 2012;

Schwarzenberg et al., 2007; Zografos et al., 2013). Currently,

the practical implementation of waveform tomography is lim-

ited to 2 D slice-by-slice scanning devices. Here, the cost of

numerical wave propagation is reduced by 2 D approximations,a)Electronic mail: naiara.korta@erdw.ethz.ch
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which may, however, introduce undesirable artifacts in the

reconstructions (Goncharsky et al., 2016; Sandhu et al., 2017;

Wiskin et al., 2013). Fully 3 D devices may overcome these

limitations by including out-of-plane scattering and refraction.

At present, however, high-frequency transducers are dominat-

ing such devices, which excludes the use of waveform tomog-

raphy. Adapting the existing acquisition systems to new

tomographic methods is not straightforward and opens new

questions: What are the optimal acquisition designs, in terms

of accuracy and cost, for each imaging method?

The studies above reveal an interdependency between

(1) the quality of the reconstructed images, (2) the involved

computational cost, (3) the applied tomographic method, and

(4) the design of the experimental setup. To find an optimal

trade-off between accuracy and cost, a framework that inte-

grates these four aspects is key. In this sense, optimal experi-

mental design (OED) methods offer a powerful tool, and

they have been successfully applied to similar problems, for

instance, in seismic exploration (Curtis et al., 2004; Guest

and Curtis, 2009; Maurer et al., 2010, 2017). The goal of

OED is to optimize the experimental setup in order to maxi-

mize the information about the region of interest (ROI) that

can be retrieved from the observations. In addition, OED

methods provide benefit-cost curves that quantify the infor-

mation gain versus the computational cost related to differ-

ent experimental configurations. These curves are

particularly useful to identify redundancies in the measure-

ments, and by doing so, maximize the benefit-cost ratio of an

experiment (Maurer et al., 2017).

Methods to optimally design the experimental setup

have been recently introduced in USCT (Gemmeke et al.,
2014; Korta Martiartu et al., 2017; Maurer et al., 2017;

Vinard et al., 2018). They have been formulated either for

time-of-flight inversion using straight rays or for time-

domain waveform inversion. In other words, these formula-

tions account only for transmission information. An optimal

scanning system, however, should simultaneously provide

accurate results for both transmission (e.g., speed of sound)

and reflection (reflectivity) information. The main objective

of this work is to present a general OED formulation for

joint optimizations, in which the experimental setup is opti-

mized, in terms of accuracy and cost, to image both reflec-

tion and transmission information. Our approach not only

collects the tomographic methods already introduced by

previous studies, but also extends to reflectivity imaging

techniques. Therefore, we consider both the conventional

ray-based and the most advanced wave-based imaging

methods.

The rest of the paper is organized as follows. We first

present the theoretical aspects of the OED problem. Using

the Bayesian approach, we formulate the quality of an exper-

imental design in terms of the uncertainties in the parameters

that we expect post-reconstruction. Naturally, the quality

measure will depend on the specific imaging method applied,

and we therefore introduce the explicit expressions for four

imaging approaches. Next, we illustrate the performance of

our OED approach using a numerical toy example, and we

conclude by applying it to real data.

II. OPTIMAL EXPERIMENTAL DESIGN METHOD

A. Bayesian inverse problem

The goal of USCT is to estimate the acoustic tissue

parameters m from the observations of the ultrasound signals

dobs that are recorded by an experimental setup s. For

instance, m represents the distribution of the speed of sound

in space; dobs contains the recorded times of the first arrivals;

and s denotes the locations of the active transducers on the

scanning device.

The physical model that predicts observable parameters

d from model parameters m can be expressed by the forward

operator F as

d ¼ Fðm; sÞ þ �; (1)

where the vector � accounts for the measurement noise that

we assume to be Gaussian with zero-mean and covariance

matrix Cnoise. In Secs. III A and III B, we discuss specific

formulations for the forward operator that approximate the

ultrasonic wave propagation with different degrees of

accuracy.

In USCT, the non-linearities of Fðm; sÞ with respect to

m are not too severe in the context of OED. In particular, we

assume that the acoustical parameters show relatively small

variations with respect to some prior knowledge mprior. This

can be, for instance, the medium in which calibration data is

recorded. In such situations, we can linearize the forward

operator as

Fðm; sÞ � Fðmprior; sÞ þ F0ðm; sÞjm¼mprior
ðm�mpriorÞ;

(2)

where higher-order model perturbation terms have been

neglected. Here, F0 is the first derivative of the forward oper-

ator with respect to m, i.e., the Jacobian operator. For nota-

tional simplicity, we will continue using F0ðsÞ to express

F0ðm; sÞ evaluated at mprior.

Measurement noise, limited data coverage, and the

approximations in the forward operator introduce uncertainties

into the estimated parameters. From Bayesian inference theory,

the solution to the inverse problem is therefore described as the

posterior probability density function pðmjd; sÞ, which com-

bines the data likelihood and our prior beliefs about the param-

eters. For simplicity, we assume the latter to be Gaussian, with

mean mprior and covariance matrix Cprior. This aspect will be

further discussed in Sec. II D.

For the forward problem in Eq. (2), the posterior

pðmjd; sÞ is also Gaussian (Tarantola, 2005),

pðmjd; sÞ / exp � 1

2
Dm�gDm
� �T

C�1
post Dm�gDm
� �� �

;

(3)

with mean

gDm ¼ CpostðsÞF0ðsÞTC�1
noiseDdobs (4)

and posterior covariance matrix
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CpostðsÞ ¼ F0ðsÞTC�1
noiseF0ðsÞ þ C�1

prior

� ��1

: (5)

Here, we denote Ddobs ¼ dobs � Fðmprior; sÞ and Dm

¼ m�mprior. The weighted norms are defined as jjxjj2C�1

¼ xTC�1x, where the superscript T represents the transpose

operation of a vector or matrix.

The term F0ðsÞTC�1
noiseF0ðsÞ in the posterior covariance

matrix CpostðsÞ is the data misfit Hessian (Attia et al.,
2018), and it shows useful properties to measure the qual-

ity of an experimental configuration. First, it depends on

the parameters that define the experimental setup. This

allows us to compare different candidates and select the

ones that give the lowest uncertainties in the parameter

estimation. Second, it neither depends on the observations

nor the unknown model parameters, which means that it could

be used to optimize the experiment before any realization.

Last, it shows the same structure for any forward operator,

under the condition that these are linear or can be linearized

with respect to the model parameters. This allows us to present

general formulations of the OED problem, independent of the

tomographic method that is intended to be applied post-

acquisition.

1. Joint posterior covariance

Ideally, an experimental setup should be flexible enough

to provide reliable reconstructions of different acoustic

parameters using multiple tomographic methods. Assume,

for instance, that we expect to reconstruct the speed of sound

m1 and the reflectivity m2 of the tissue using the imaging

techniques F1 and F2, respectively. Moreover, we denote by

d1 and d2 the corresponding observed data, and by C1 and C2

the covariance matrix of the noise for each case, respec-

tively. We can formulate the joint forward problem as

Dd1

Dd2

" #
¼

F01 0

0 F02

" #
Dm1

Dm2

" #
; (6)

which essentially consists of two separable subproblems. Here

we have simplified the notation as F0i ¼ F0iðsÞ for clarity. If we

now define Ddobs ¼ ½Dd1; Dd2� and Dm ¼ ½Dm1; Dm2�, and

we denote the joint forward operator as F0, the posterior covari-

ance matrix will be given by Eq. (5). In this case, the data mis-

fit Hessian is a block-diagonal matrix,

HmisfitðsÞ ¼ F0TC�1F0 ¼ F0T1 C�1
1 F01 0

0 F0T2 C�1
2 F02

" #

¼
Hmisfit;1 0

0 Hmisfit;2

" #
; (7)

with C�1 being a block-diagonal matrix composed by C1

and C2.

As a first approximation, our formulation neglects the

trade-offs between parameter m1 and m2, which is justified

by the specific nature of each subproblem. This point will be

further discussed in Sec. III C.

B. Quality measure

Our ability to invert Hmisfit will determine how the

uncertainties in the data space are mapped into the model

parameters. For example, small eigenvalues of the matrix

will yield large variances in the model parameters, which

translates to higher uncertainty in the reconstruction.

Assume that H is a scalar function that quantifies the level

of expected uncertainties in the parameters by extracting

some properties from Hmisfit. Then, we can formulate the

OED problem as a minimization problem,

min
s2S

H HmisfitðsÞð Þ; (8)

where S represents the space for all possible experimental

configurations.

There are various definitions for H that have been suc-

cessfully applied in the field of OED (Curtis, 2004; Khodja

et al., 2010). The use of different design criteria mostly

depends on the involved computational complexity for the

specific problem under consideration. In this study, we con-

sider the D-optimality condition (Alexanderian and Saibaba,

2018; Atkinson and Donev, 1992; Attia et al., 2018), which

defines H as

H ¼ log det Cpostð Þ ¼ �log det Hmisfit þ C�1
prior

� �
: (9)

One can compute this quantity using Cholesky factorization

of Hmisfit þ C�1
prior, which is positive definite by construction.

Note that C�1
prior acts as a threshold for small eigenvalues of

Hmisfit. We can alleviate the cost of computing H by reduc-

ing the domain to a subset of parameters. This is particu-

larly helpful to maximize the information about a specific

ROI.

The determinant corresponds to the product of the

eigenvalues, and thus, the D-optimal design minimizes the

volume of the uncertainty ellipsoid in the estimated parame-

ters. From information theory, this quantity can be related to

the expected information gain W (Attia et al., 2018), which

is an important property for our application. We compute

this by subtracting from H the contribution of the prior

Cprior, i.e., W ¼ �Hþ log detðCpriorÞ. Furthermore, the D-

optimal designs show invariant properties with respect to

different model reparameterizations (Dette and O’Brien,

1999). This may be crucial when the parameterization for

the reconstructions is not known beforehand. Here, we refer

to the discretization of the acoustic tissue parameters as

parameterization.

For joint optimizations introduced in Sec. II A 1, the

quality measure is the combination of terms related to each

subproblem,

H ¼ �log det Hmisfit;1 þ C�1
prior;1

� �
� log det Hmisfit;2 þ C�1

prior;2

� �
: (10)

Note that the data and prior covariances weigh the contribu-

tion of both terms. We further discuss this aspect in Sec. IV.
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C. Sequential optimal experimental design

Our ultimate goal is to optimize the measurements col-

lected from USCT acquisition systems using Eq. (8). This

can be controlled, for instance, by the number and loca-

tions of the transducers on the device. A common strategy

is to predefine the total number N of candidate locations

for the transducers, and to define the experimental design s

as an array of binary entries that selects a subset of them: 0

for nonactive transducers, and 1 for the active ones.

Although this approach reduces significantly the design

space S, it still includes all transducer combinations, the

total number being
PN

i¼1

N
i

� 	
¼ 2N � 1, and it may

become very large for problems with a large number of

design parameters N.

To make the optimization problem computationally

tractable, we aplpy the sequential optimal experimental

design (SOED) method (Guest and Curtis, 2009; Maurer

et al., 2010). In this approach, we start from an experimental

configuration that considers all candidate transducers active,

and we deactivate them one by one in each iteration. The

overall algorithm describing our implementation of the

SOED method is given in Algorithm 1. Here, we denote by

sk ¼ ðs1;…; sNÞ 2 f0; 1gN
the transducer configuration

found at the k-th iteration. Our method samples a total num-

ber of NðN þ 1Þ=2 experimental designs.

ALGORITHM 1: Algorithm for SOED method.

1: Consider all candidate transducers active: s0 ¼ ð1;…; 1Þ.
2: while sk has at least one active transducer do

3: for i 1 to n do � n: number of active transducers in sk .

4: Deactivate i-th transducer.

5: Compute and store H for the remaining configuration.

6: Deactivate from sk the transducer that minimizes H.

Due to the sequential nature of the algorithm, SOED has

the advantage of providing benefit-cost curves. An example

of this is shown in Fig. 1. They illustrate the gain in the data

information content with respect to the experimental cost

(Maurer et al., 2017). They are particularly useful maximize

the benefit-cost ratio of the experiment by identifying

redundancies in the observations. In Sec. IV, we further dis-

cuss these curves using a toy example.

D. Non-Gaussian priors

While non-Gaussian priors are often used in USCT (Li

et al., 2009; Matthews et al., 2017), in this study we rely on

Gaussian priors to formulate the D-optimal SOED (D-

SOED) approach. In this way, analytical expressions of the

posterior are available [see Eq. (5)]. To compute the D-

optimality criterion, (1) we constrain the model parameters

to the ROI, (2) we assume equally reliable observations,

Cnoise ¼ rnI, and (3) we define Cprior ¼ rpI, r�1
p being small

enough to stabilize the inversion of the ill-conditioned

matrix Hmisfit. As a result, our algorithm selects the experi-

mental designs improving most the properties of Hmisfit. In

particular, we expect the optimal designs to improve the

effective rank of Hmisfit, which has a rapidly decaying spec-

trum. Because the regularization techniques mainly act in

the effective nullspace of Hmisfit, reconstruction algorithms

that use other priors will also benefit from our solutions.

III. APPLICATION TO IMAGING TECHNIQUES

The D-SOED strategy outlined above may be applied to

any linearizable inverse problem. Here we specifically focus

on four imaging methods considered for USCT, and we pro-

vide the respective Jacobian operators. All these methods

approximate the acoustic wave equation

1

qðxÞc2ðxÞ @
2
t pðx; tÞ � r � 1

qðxÞrpðt; xÞ
� 	

¼ 1

qðxÞ f ðt; xsÞ (11)

with different degree of accuracy. Here, p is the acoustic pres-

sure field, and f is the external source generated from emitting

transducers at xs. The parameters q and c represent the density

and speed-of-sound distributions, respectively. Because in this

study we do not consider imaging techniques that reconstruct

the density distribution, we assume this as a constant in our deri-

vations. The model parameters to estimate are therefore the

speed of sound c(x) and the reflectivity IðxÞ ¼ 2dcðxÞ=c0, c0

and dcðxÞ being the background speed of sound and the pertur-

bations with respect to it, respectively. These parameters are

retrieved from the observations of the pressure field pðxr; t; xsÞ
at receiver positions xr, and in particular, we extract the informa-

tion of the first-arrival times Tðxs; xrÞ and the scattered wave-

fields dpðxr; t; xsÞ. Linking to the notation used to formulate the

joint forward problem in Eq. (6), we denote the unknown param-

eters as Dm ¼ ½Dm1; Dm2� ¼ ½dcðxÞ; IðxÞ�, and the observed

data as Ddobs ¼ ½Dd1; Dd2� ¼ ½dTðxs; xrÞ; dpðxr; t; xsÞ�.

A. Ray-based methods: Infinite-frequency

1. Time-of-flight straight-ray tomography: Speed of
sound

For the speed-of-sound reconstructions, first-arrival

times are often approximated by straight-ray models (Dapp

et al., 2011; Li et al., 2009). Here, changes in the time of
FIG. 1. (Color online) Illustrative example of the benefit-cost curve obtained

from SOED approach.
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flight dTðxi
s; x

i
rÞ of the i-th ray that travels from the emitter at

xi
s to the receiver at xi

r are related to the speed-of-sound per-

turbations as

dTðxi
s; x

i
rÞ ¼ �

ð
rayi

dcðxðlÞÞ
c2

0

dl �
XN

j¼1

lij

c2
0

Dcj; (12)

where x(l) is position along the ray-path in terms of

arclength l. In the discrete form, we assume that the ROI has

been partitioned into N cells with constant speed of sound.

Then, lij represents the length of the i-th ray in the j-th cell,

Dcj being the corresponding speed-of-sound difference with

respect to c0. If the experiment has collected a total of M
measurements, the Jacobian operator is a matrix of size

M�N with the elements given by

F0ij ¼
lij
c2

0

: (13)

2. B-mode technique: Reflectivity

The B-mode technique is widely used to image the

reflectivity of breast tissue. Based on the delay-and-sum

principle, the image is constructed by focusing the received

energy into the scatterer locations. The method assumes

single-scattering, and computes the times of flight T using

straight rays, similar to Eq. (12). The imaging condition for

the reflectivity distribution I(x) is

IðxÞ ¼
X

s

X
r

E xr; t ¼ Tðxs; xÞ þ Tðx; xrÞ; xsð Þ; (14)

where E is the envelope of the recorded signal pðxr; t; xsÞ.
The summation over s and r indicates all emitter-receiver

combinations. Each time instant of the recorded signal is

transformed to a space location using the emitter-scatterer-

receiver geometry, where each grid point is a possible scat-

terer location.

Equation (14) approximates the unknown reflectivity

distribution, and it is a proxy to the solution of the underly-

ing inverse problem. To obtain more accurate images, differ-

ent studies have reformulated Eq. (14) into a forward and

inverse problem (Lavarello et al., 2006). In the context of

optimal design, we expect equivalent solutions for both

approaches. In the following, we derive the forward problem

of the B-mode technique.

We first assume an unbounded homogeneous medium

with speed of sound c0. For a point source f ðtÞdðx� xsÞ, the

pressure field p0ðx; tÞ is analytically expressed as

p0ðx; tÞ ¼
1

4pjjx� xsjj
f t� jjx� xsjj

c0

� 	
; (15)

where jjx� xsjj is the Euclidean distance between x and xs.

Now, assume that the medium is slightly perturbed to

c0 þ dcðxÞ. The new wavefield can be expressed as p0 þ dp,

where dp is the scattered field due to the perturbation dc.

Under the Born approximation, the acoustic wave equation

that relates dp and dc is given by

1

c2
0

@2
t �r2

� 	
dpðx; tÞ ¼ 2dcðxÞ

c3
0

@2
t p0ðx; tÞ: (16)

The scattered field dp is generated by secondary sources

exited due to the interaction of the pressure field p0 with the

perturbation dc. Similar to Eq. (15), the solution can be

expressed as (Tarantola, 1984)

dpðx; tÞ ¼ 1

16p2c2
0

ð
V

1

jjx� x0jjjjx0 � xsjj
d

� t� jjx� x0jj þ jjx0 � xsjj
c0

� 	
� Iðx0Þdx0 � @2

t f ðtÞ; (17)

where V is the volume of the ROI and * indicates the convo-

lution operation. This equation describes the forward prob-

lem related to the B-mode imaging. Typically, to obtain

sharper reflectivity images, the source-time function is

deconvolved from the measured signals, and the transmitted

information is muted from them. We denote as [t0, t1] the

time interval of the scattered information in the recorded sig-

nals, being t1 the recording length. Therefore, for the mea-

surement i that combines the emitter xs and the receiver xr,

the elements of the discrete Jacobian are

F0ij ¼
1

16p2c2
0

DVj
1

jjxr � xjjjjjxj � xsjj
d t0;t1½ �ðsjÞ; (18)

where DVj is the volume of the j-th cell located at xj, and

d t0;t1½ �ðsjÞ¼
1; sj 2 t0; t1½ �
0; sj 62 t0; t1½ �

with sj¼
jjxr�xjjjþ jjxj�xsjj

c0

:

(
(19)

B. Wave-based methods: Finite-frequency

Ultrasonic sources used in USCT are band-limited, and

finite-frequency effects may be important. Recently, wave

equation based approaches have been proposed to improve

the resolution of the USCT images. These include waveform

tomography for speed-of-sound reconstructions (Boehm

et al., 2018; Matthews et al., 2017; P�erez-Liva et al., 2017;

Pratt et al., 2007) and reverse-time migration (RTM) for

reflectivity images (Roy et al., 2016).

1. Time-of-flight waveform tomography: Speed of
sound

Waveform inversion is often stated as a non-linear least-

squares problem, in which we minimize the L2-distance

between the observed and modelled signals (Boehm et al.,
2018; Goncharsky et al., 2016; Roy et al., 2010). Waveform

differences, however, are highly non-linear with respect to

the model parameters, and convergence towards the global

minimum may be difficult. In seismic tomography, a variety

of misfit functionals with improved convexity have been

proposed (Bozdag et al., 2011; Fichtner et al., 2008; Luo

and Schuster, 1991; Warner and Guasch, 2016). In this

1256 J. Acoust. Soc. Am. 146 (2), August 2019 Korta Martiartu et al.



study, we consider the cross-correlation time-of-flight misfit

functional (Luo and Schuster, 1991; Marquering et al.,
1999), which quantifies the differences between predicted

and measured first-arrival times. In contrast to waveform dif-

ferences, the non-linearities of times of flight with respect to

the speed-of-sound perturbations are weak, and it justifies

the linearized assumptions introduced in Sec. II A (Mercerat

and Nolet, 2012).

Assume that Tðxi
s; x

i
rÞ is the time-of-flight difference

between the observed and modelled signal (in c0) computed

from the cross-correlations. Anomalies in the time-of-flight

difference are related to the speed-of-sound perturbations

through the finite-frequency sensitivity kernel Kðx; xi
r; x

i
sÞ as

(Korta Martiartu et al., 2019; Luo and Schuster, 1991)

dTi ¼
ð

V

Kðx; xi
r; x

i
sÞdcðxÞdx: (20)

Here, the volume V represents the ROI. The sensitivity ker-

nel is given by

Kðx; xi
r;x

i
sÞ ¼ KiðxÞ

¼ � 2

c3
0ðxÞ

ðt1

0

@tp0ðx; t; xi
sÞ@tp

†
0ðx; t1� t; xi

rÞdt;

(21)

where [0, t1] is the time interval in which the first arrivals

occur. p0ðx; t; xi
sÞ is the pressure field propagated through c0

due to the emitter at xi
s, and p†

0ðx; t1 � t; xi
rÞ is the backpropa-

gated pressure field from the receiver at xi
r. The dagger symbol

represents the adjoint field derived from the cross-correlations

(Luo and Schuster, 1991; Tromp et al., 2005).

Equation (20) describes the linearized forward problem

for the time-of-flight waveform tomography. In the discrete

form, the Jacobian matrix is computed as

F0ij ¼ KiðxjÞDVj; (22)

where xj and DVj are the position and the volume of the j-th
cell, respectively.

2. Reverse-time migration: Reflectivity

RTM has recently been introduced to USCT to image the

reflectivity distribution of the breast tissue (Roy et al., 2016).

The standard imaging condition I(x) is based on the cross-

correlation between the wavefield pðx; t; xsÞ propagated forward

in time from emitters at xs, and the time-reversed measured

wavefield p†ðx; t1 � t; xrÞ propagated from the receivers at xr

(Claerbout, 1971; Dai and Schuster, 2013),

IðxÞ ¼
X

s

ðt1

0

@2
t pðx; t; xsÞp†ðx; t1 � t; xrÞdt: (23)

The sum over s stacks the contributions from all emitters.

Similar to B-mode imaging, RTM is based on the Born

approximation of the acoustic wave equation [Eq. (16)].

The background speed-of-sound model c0ðxÞ is the solution

to the time-of-flight (waveform) tomography. Hence, the

perturbed wavefield dpðx; tÞ related to the speed-of-sound

anomaly dc is computed as

dpðx; tÞ ¼
ð

V

Iðx0Þ
c2

0ðx0Þ
G0ðx; t; x0; 0Þ

� G0ðx0; t; xs; 0Þ � @2
t f ðxs; tÞ


 �
dx0; (24)

where G0ðx; t; xs; 0Þ represents the Green’s function of the

model c0ðxÞ due to a source at xs. Because of the heteroge-

neous background model, the Green’s functions are com-

puted by numerical simulations of wave propagation, which

is the main difference between RTM and B-mode [see Eqs.

(24) and (17)].

If we linearize the forward problem using the prior

information c0ðxÞ ¼ c0, we obtain the same forward operator

as in B-mode imaging. We therefore expect that, an opti-

mized experimental configuration for B-mode, will also be

optimized for RTM.

C. Sensitivities in the Jacobian operator

Figure 2 illustrates the information encoded in a row of

the Jacobian F0 for each imaging technique discussed above.

By definition, each row represents how sensitive a single

measurement is to changes in the model parameters.

For transmission data in the infinite-frequency approxi-

mation, times of flight are only sensitive to changes in the

model parameters along the geometrical ray path [Fig. 2(a)].

When we incorporate finite-frequency effects, sensitivities

extend away from the ray paths, showing an ellipsoidal

shape defined by the Fresnel zones. Figures 2(b) and 2(c)

show two examples with frequencies in the range of

0.2–0.8 MHz and 1–3 MHz, respectively. The sensitivity

along the ray path is low in magnitude (Marquering et al.,
1999), especially observed at lower frequencies. At high fre-

quencies, the sensitivity kernel becomes narrower, consistent

with what ray theory predicts. We expect these differences

to affect the optimized experimental designs in each case.

For reflection data, Figs. 2(d) and 2(e) show the sensitiv-

ities of the scattered signal to perturbations in the model

parameters. These examples use the sources corresponding

to the frequency ranges discussed above. The sensitivity cor-

responds to the time-space transformation ellipsoid multi-

plied by a term that accounts for spherical divergence effects

[see Eq. (18)]. The size of the sensitive area is the result of

the signal duration (0.14 ms) and frequencies. The lack of

sensitivity in the interior of the ellipsoid is due to the direct

arrivals, which are muted to include only the scattered infor-

mation. For lower frequencies, the zero-sensitivity area is

larger due to the longer period of the direct arrivals. Finite-

frequency tomography sensitivities in Figs. 2(b) and 2(c) are

complementary to the reflection sensitivities. Tomography

resolves the low-wavenumber components of the medium,

whereas the high wavenumbers are obtained by reflection

imaging (migration) (Mora, 1989). An experimental setup

therefore should be optimal to jointly retrieve transmission-

reflection information from the measurements, which is the

main focus of this paper.
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In the following we illustrate the potential of the joint

D-SOED approach, first using an intuitive toy example, and

then with an application to real data provided by CSIC/USM

as part of the USCT Data Challenge 2017 (Ruiter et al., 2017).

IV. TOY EXAMPLE

In our toy example, we consider a circular configuration

of radius 10 cm with 125 regularly spaced transducers,

shown in Fig. 3. Here, we only take one transducer as emitter

(red dot), and the rest as receivers (white dots). The source

signal is a broad-band pulse, with frequencies in the range

350 kHz–1.2 MHz, and the recording time length is 0.14 ms.

The unknown parameters are discretized on a rectilinear grid

of 1 mm. Because our D-SOED algorithm does not depend

on the model parameters, we only specify a ROI in which

we want to minimize the uncertainties. In the interest of pro-

ducing intuitively interpretable results, we define a relatively

small ROI, indicated by the white circle of radius 1.5 cm.

Our goal is to apply D-SOED to identify the most infor-

mative receivers when recording both transmission and

reflection data. First, we analyze the sensitivity of our acqui-

sition system to the ROI. This will allow us to gain deeper

insight into the relationship between the experimental design

and the individual imaging methods. Second, we optimize

the receiver configuration separately for each imaging tech-

nique. We use this to introduce the D-SOED algorithm and

to discuss the benefit-cost curves described in Sec. II C.

Finally, we perform the joint transmission-reflection optimi-

zation of the experimental design.

A. Sensitivity of the acquisition system

To understand the information that our acquisition sys-

tem can exploit from each imaging technique, we first illus-

trate in Fig. 3 the stacked sensitivities to model parameters

of all emitter-receiver combinations, which can be inter-

preted as sensitivity coverage.

Figure 3(a) shows the sensitivity coverage for the time-

of-flight tomography with straight rays. Only few receivers

facing the emitter collect signals that contain information

about the ROI, which in fact is very sparse. We therefore

FIG. 2. (Color online) Normalized sensitivity to model parameters encoded in the Jacobian operator of a single measurement. (a) Time-of-flight tomography

using straight rays. (b), (c) Time-of-flight waveform tomography using a broad-band pulse of 0.2–0.8 MHz and 1–3 MHz, respectively. (d), (e) Reflection

imaging technique, with direct arrivals muted, corresponding to the sources in (b) and (c), respectively. The white dots indicate the emitter-receiver locations.

FIG. 3. (Color online) Normalized sensitivity coverages for a circular configuration with 125 transducers. The white circle indicates the ROI, and the red and

white dots are the emitter and receivers, respectively. (a) Time-of-flight tomography using straight rays. (b) Time-of-flight waveform tomography using a

broad-band pulse of 350 kHz–1.2 MHz. (c) Reflection imaging technique. (d), (e) Two examples of single measurement sensitivities for reflection data. Here,

the green dots indicate the active receivers.
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expect that the D-SOED algorithm will select these receivers

as the most informative ones, giving a steep benefit-cost

curve.

For finite-frequency tomography the information about

the ROI is more uniform, as shown in Fig. 3(b). Compared

to Fig. 3(a), receivers located at larger angles are also sensi-

tive to the ROI. We therefore expect that the D-SOED algo-

rithm will identify a larger number of informative receivers.

Figure 3(c) displays the sensitivity coverage for the reflec-

tion imaging technique. To understand this better, we moreover

show in Figs. 3(d) and 3(e) two examples of single measure-

ments for receivers located on the reflection- and transmission-

side, respectively. Both types of measurements are sensitive to

the ROI, and the combination of both will cover the entire ROI.

We therefore expect the D-SOED algorithm to select receivers

at both sides, with even more density on the transmission-side

due to the sparse information collected from there. Though this

may initially appear counterintuitive, it is an effect of the

recording time length, the location and size of the ROI, and the

circular configuration of transducers.

B. Individual optimizations

We apply the D-SOED algorithm separately for each imag-

ing technique. The resulting benefit-cost curves are shown in

Fig. 4(a). In all cases the information gain increases monotoni-

cally with the number of receivers, which means that more mea-

surements improve the estimation of the parameters. At a

certain point, however, the curves become flat. This occurs

when the experiment includes receivers that either do not collect

any information about the ROI or introduce redundancies. The

transition between both stages, and in particular the point with

the maximum curvature, represents the optimal benefit-cost ratio

for the experiment, indicated by dashed lines in Fig. 4(a).

Receiver configurations with the optimal benefit-cost ratio

are displayed in Figs. 4(b)–4(d). All results show the expected

features discussed in Sec. IV A. Because our ultimate goal is

the joint optimization, we focus on comparing the optimized

setups for transmission and reflection data. On the one hand,

we do not observe any receiver that was simultaneously

selected as the most informative one for transmission with

straight rays and reflection. Indeed, the uninformative receivers

for reflection data (identified in the flat part of the benefit-cost

curve) are the most informative ones for tomography with

straight rays. We therefore expect that the joint optimization

between these two techniques will result in the superposition of

both individual optimizations. On the other hand, when we

consider finite-frequency tomography, there is an overlap

between the most informative receivers for reflection and trans-

mission. Here we expect that the D-SOED algorithm will select

first the receivers in common for both imaging techniques. Due

to this overlap, in the following we use the latter combination

of techniques to discuss the joint D-SOED algorithm.

C. Joint optimization

We apply the D-SOED algorithm using the joint for-

ward formulation in Eq. (6) for finite-frequency tomography

and reflection imaging. Figure 5(a) displays joint and indi-

vidual benefit-cost curves for transmission and reflection,

revealing three stages of the algorithm. Sensitivity coverages

for each stage are shown in Figs. 5(b)–5(g). First, the algo-

rithm selects receivers that are simultaneously sensitive to

the ROI for both transmission and reflection. Consequently,

both individual benefit-cost curves increase with the number

of receivers. Then, receivers informative only for the trans-

mission technique are selected. The corresponding informa-

tion gain increases while remaining almost constant for

reflection data. Finally, the experimental design is completed

with receivers on the reflection-side, which are uniquely

informative through the reflection technique. Here, the trans-

mission benefit-cost curve remains constant, and it increases

monotonically for the reflection. During all these stages the

joint information gain increases monotonically.

The data and prior covariances weigh the contribution

of each imaging technique in the joint optimization.

Different choices will mostly affect the order in which the

D-SOED algorithm selects the poorly informative receivers

for each imaging technique. In our toy example, if the reflec-

tion technique contributes stronger to H in Eq. (10), the

receivers facing the emitter will be selected last. In other

words, this would affect the second and third stages illus-

trated in Fig. 5. However, we do not expect significant dif-

ferences in the first stage, in which the algorithm selects first

the receivers that contribute most for both techniques. Due

to the nature of the determinant, the D-SOED algorithm

FIG. 4. (Color online) Results from D-SOED method applied to each imaging technique. (a) Benefit-cost curves representing the information gain W with

respect to the number of receivers. The dashed lines indicate the respective optimal number of receivers. (b)–(d) Normalized sensitivity coverages for the

experiments using the most informative receivers obtained in each case: (b) time-of-flight tomography using straight rays (12 receivers), (c) time-of-flight

waveform tomography (28 receivers), and (d) reflection imaging technique (26 receivers). The outlined circles link (b) and (c) to the dashed lines in (a).
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essentially finds compromises between the parameters, pro-

viding solutions with balanced information.

V. REAL DATA APPLICATION: EMITTER SELECTION

To validate our algorithm, we apply the D-SOED

method to real data. We consider the dataset provided as part

of the SPIE USCT Data Challenge 2017 by the Spanish

National Research Council (CISC) and the Complutense

University of Madrid (UCM). The dataset contains

64 768 A-scans recorded from a setup that consists of two

transducer arrays of 16 elements. The transducers in one

array act as emitters, with dominant frequency of 3.5 MHz,

whereas the ones in the other array are recording. For each

position of the emitting array, the receiving array is placed

in 11 different positions, as shown in Fig. 6, and the whole

system is rotated into 23 different positions, describing a cir-

cle with radius 95 mm. The main data coverage is obtained

in a circular ROI of radius 7 cm. The true model used in this

experiment is a phantom based on water, gelatine, graphite

powder, and alcohol, and it is illustrated in Fig. 6. It has a

cylindrical homogeneous background with a diameter of

94 mm, two inclusions of 2 cm diameter, and two steel nee-

dles (Camacho et al., 2012; Ruiter et al., 2018).

In this application, our goal is to decrease the data vol-

ume to reduce the time to solution. Here, the number of mea-

surements is mainly controlled by the total number of

emitting elements in the transducer array. Each element adds

23� 176¼ 4048 new measurements to the dataset. We

therefore aim to select the most informative ones, removing

those that provide redundant information about the ROI.

This choice of the design parameter has an additional main

reason: for imaging techniques based on numerical wave

propagation (e.g., RTM or waveform tomography), the com-

putational cost is proportional to the number of wave propa-

gation simulations, and this is related to the number of

emitters.

We apply the D-SOED method to jointly optimize the

emitter configurations for transmission and reflection, using

both straight-ray and finite-frequency transmission techni-

ques. As in the example before, we parameterize the model

FIG. 5. (Color online) Results from joint transmission-reflection D-SOED algorithm. (a) Joint and individual benefit-cost curves for each imaging technique.

The curves are normalized by the total joint information gain W. Blue (left), green (middle), and yellow (right) dashed lines indicate 24, 36, and 51 (the opti-

mal) number of receivers, respectively. (b), (d), (f) Transmission and (c), (e), (g) reflection sensitivity coverages for the optimized configurations with 24, 36,

and 51 receivers, respectively.
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using a rectilinear grid with 1 mm mesh size. The benefit-

cost curves are shown in Fig. 7(a). In both curves the optimal

benefit-cost ratio is reached for four emitters. This may be

an effect of the relatively high frequencies used in the exper-

iment, in which the finite-frequency sensitivities become

closer to ray-based predictions. For a fixed number of emit-

ters, the curves moreover show how the information gain

varies for randomly selected emitter locations. In this appli-

cation, the choice of the emitter locations has a less signifi-

cant effect on the information gain than the number of

emitters. This is due to the good data coverage provided by

the aperture, in general, and by not reducing the number of

receivers during the D-SOED, in particular. Despite the

small variations, our D-SOED algorithm certainly selects

solutions close to the optimal in each case.

To verify our interpretation of the benefit-cost curves, we

compare the reconstructions obtained from the optimized set-

ups with the ones obtained using all emitters. For transmission

tomography, we apply total variation regularization (Jensen

et al., 2012), and the results are shown in Figs. 7(b)–7(e). Our

reconstructions are in agreement with the results obtained by

other studies (Ruiter et al., 2018). For both imaging techniques,

reconstructions using only 25% of the dataset are almost identi-

cal to the ones using the complete dataset. The root-mean-

square error (RMSE), comparing the observed times of flight

with the times of flight predicted by the reconstruction, is indi-

cated in the figures. In all cases, we compute the RMSE using

the complete dataset, showing that the results from optimized

setups explain the data equally well. This means that, effec-

tively, our D-optimal algorithm accurately identifies the redun-

dancies in the measurements. The supplementary material1

also includes reconstructions at different stages of the benefit-

cost curves.

FIG. 6. (Color online) The acquisition system and phantom used to collect

the CSIC/UCM dataset. The circle in red indicates the ROI considered for

this study, which has a radius of 7 cm. White and black dots outside the

ROI represent the transducers in the emitting and receiving array (in 11 dif-

ferent positions), respectively. An illustration of the true model is shown

inside the ROI.

FIG. 7. (Color online) (a) Benefit-cost curves of D-SOED for reflection-transmission when considering straight-rays (red dashed line) and finite-frequencies

(blue solid line). For 2 to 6 number of emitters, black lines indicate the variation in the information gain W for randomly selected emitter locations. (b), (c)

Speed-of-sound reconstructions with straight-ray tomography using optimally selected four emitters and all the emitters, respectively. (d), (e) Speed-of-sound

reconstructions using finite-frequency tomography. We use optimally selected four emitters and all the emitters, respectively. Selected emitters are illustrated

in the bottom-left corner. The circles indicate the relative positions of the 16 elements in the emitter array (white dots in Fig. 6), and the filled circles indicate

the selected ones in each case. In all reconstructions we only show the ROI, and we indicate the RMSE in times of flight. The initial RMSE is 1.77� 10�6 s.
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Because the emitter configuration is simultaneously opti-

mized also for reflectivity imaging techniques, in Fig. 8 we

show the images resulting from B-mode and RTM techniques.

We use the spectral element solver Salvus (Afanasiev et al.,
2019) for the numerical wave propagation simulations required

for RTM. Similar to the transmission case, there are no signifi-

cant differences between the images obtained from 4 and 16

emitters. In all cases, the features resolved with the complete

dataset are also recovered when using only 25% of the dataset.

Here, we also validate the linearization assumptions made in

the context of optimal experimental design. Although we select

the most informative emitters assuming a homogeneous model

in the estimation of the covariance operator, the reflectivity

images are obtained using speed-of-sound reconstructions

shown in Fig. 7.

VI. DISCUSSION AND CONCLUSION

In this study, we introduce the D-SOED method in the

context of breast tissue imaging with ultrasound. Our

approach is flexible enough to optimize the acquisition sys-

tem for both transmission and reflection data, and using

either ray-based or wave-based methods for the reconstruc-

tions. This flexibility is crucial for USCT, where the final

product is a collection of images of different acoustic proper-

ties of the tissue. Although we only consider reflectivity and

speed of sound, the extension to other properties, such as

attenuation and density, is straightforward. The performance

comparison for different imaging methods is beyond the

scope of this work.

The concept of optimality, however, is ambiguous, and

this can be observed, for instance, in the number of different

optimality criteria available in the literature. This ambiguity

is caused by the constraint of expressing with a scalar value

the information contained in the covariance operator. Typically,

one must choose which statistical properties will be emphasized

at the expenses of the rest, and this selection depends on the aim

of the experiment itself. In our case, we define the optimal

experimental design through the D-optimality condition, which

minimizes the volume of the joint confidence ellipsoid for the

estimated parameters. Therefore, our results do not necessarily

guarantee to improve other attributes, as for instance the inter-

parameter trade-offs. A more integrating approach could be

based on the combination of different optimality criteria (Curtis,

1999).

Additional constraints introduced in the optimal experi-

mental design method also include the definition of the

design parameters. Here, we choose to select the number and

locations of the informative transducers, but other choices

are also possible. To reduce the space of the possible experi-

mental designs, we predefine some candidate values for the

design parameters. This requires some prior information

about the acquisition system, which typically is available.

Examples of this are the approximate dimensions of the

transducer holder or the frequencies of the emitted signal.

Note that all these choices will affect the optimal design,

which is important to keep in mind when interpreting the

results. Under these constraints, however, the D-optimality

condition has an important invariant property that makes our

results general. Different model parameterizations yield

same D-optimal designs. This is crucial when the parameter-

ization is not fixed for post-acquisition reconstructions.

Although ideally the experimental design should be

optimized prior to any realization of the experiment, we

demonstrate that our approach can similarly be applied post-

acquisition. In this way, the computational cost of the recon-

structions can be controlled, and this has a significant impact

in the context of clinical practice, where fast answers are

FIG. 8. (Color online) Reflectivity images using B-mode technique (top row) and RTM (bottom row). The emitter configurations used are: (left column) opti-

mally selected 4 emitters jointly with straight-ray transmission; (middle column) 4 emitters jointly selected with finite-frequency transmission; and (right col-

umn) all emitters. Red dashed and blue solid circles indicate the background speed-of-sound models in Fig. 7 used for reflectivity imaging.
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key. Similar approaches have recently been applied in geo-

physical exploration to reduce the large data volume in marine

seismic surveys (Coles et al., 2015). However, the redundan-

cies identified by the D-SOED approach may also be used not

just to reduce the dataset but as a complementary analysis for

other methods. These could include, for example, the mini-

batch (Boehm et al., 2018) or source encoding (Wang et al.,
2014) approaches in the context of waveform tomography.

Finally, it is important to mention that, while the computa-

tional cost of D-SOED method may be challenging for large-

scale problems, the benefit of an optimized USCT system, in

terms of the image quality and computational resources, for

clinical practice is tremendous. Once the acquisition system is

optimized, the impact of the reduced cost in the recursive use

of the scanning system may become very significant.
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Hormati, A., Jovanović, I., Roy, O., and Vetterli, M. (2010). “Robust ultra-

sound travel-time tomography using the bent ray model,” Proc. SPIE

7629, 76290I.

Ihrig, A., and Schmitz, G. (2018). “Accelerating nonlinear speed of sound

reconstructions using a randomized block Kaczmarz algorithm,” in 2018
IEEE International Ultrasonics Symposium (IUS), pp. 1–9.

Jensen, T. L., Jørgensen, J. H., Hansen, P. C., and Jensen, S. H. (2012).

“Implementation of an optimal first-order method for strongly convex total

variation regularization,” BIT Numer. Math. 52(2), 329–356.

Johnson, S., Abbott, T., Bell, R., Berggren, M., Borup, D., Robinson, D.,

Wiskin, J., Olsen, S., and Hanover, B. (2007). “Non-invasive breast tissue

characterization using ultrasound speed and attenuation,” in Acoustical
Imaging, edited by M. P. Andr�e (Springer Netherlands, Dordrecht), pp.

147–154.

Khodja, M. R., Prange, M. D., and Djikpesse, H. A. (2010). “Guided

Bayesian optimal experimental design,” Inv. Probl. 26(5), 055008.

Korta Martiartu, N., Boehm, C., and Fichtner, A. (2019). “3D wave-equa-

tion-based finite-frequency tomography for ultrasound computed

tomography,” in press, available at https://arxiv.org/abs/1908.03302.

Korta Martiartu, N., Boehm, C., Vinard, N., Jovanović Balic, I., and
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