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Abstract—This work presents a novel attenuation imaging
technique for pulse-echo ultrasound systems. In contrast to state-
of-the-art techniques, we formulate the reconstruction in two
dimensions relying on tissue insonifications with different steering
angles. By beamforming backscattered echoes recorded by the
transducer, we measure at each location the changes in the
amplitudes of detected echoes with different transmissions and
relate them to local tissue attenuation. This relationship assumes
ultrasound waves propagate in straight paths; thus, we linearize
the forward problem to provide suitable time-to-solutions for
clinical practice. The presented technique is the natural exten-
sion of computed tomography in echo mode (CUTE), initially
developed for tissue speed-of-sound quantification. The perfor-
mance of our method is demonstrated in numerical examples
with data computed using the k-Wave numerical solver for
wave-propagation simulations. These examples consider tissue-
mimicking media with varying heterogeneity in attenuation and
echogenicity. The results show that our method can provide
images with promising spatial and contrast resolution, as well
as attenuation estimates independent of tissue echogenicity. This
work represents a necessary first step towards multi-modal
CUTE imaging of speed of sound and attenuation in tissue.

Index Terms—ultrasound attenuation, pulse-echo ultrasound,
tissue characterization, tomography, diffuse scattering

I. INTRODUCTION

The attenuation (ATT) of ultrasound (US) waves varies with
tissue absorption and scattering properties and can therefore
be used to identify different tissue types or pathologies. For
instance, the controlled attenuation parameter (CAP), estimat-
ing the average ATT undergone by ultrasound waves in their
propagation, has become the standard tool to diagnose hepatic
steatosis noninvasively [1], [2]. Despite its good diagnostic
performance, CAP has two main limitations: (i) it is exclu-
sively designed for liver assessment, thereby having a limited
application range, and (ii) it provides a single ATT value for a
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predefined region of interest and cannot thus characterize the
inherent tissue heterogeneity.

Imaging modalities quantifying the spatial distribution of
tissue ATT can overcome these limitations. In the past years,
several techniques have been suggested to image this prop-
erty. They include, for instance, spectral-log difference ap-
proaches [3], [4], which estimate ATT from depth-dependent
spectral amplitude variations of backscattered echoes, and
spectral-shift methods, which rely on the frequency downshift
of the spectrum caused by ATT [5], [6]. The vast majority
of these methods use simplified one-dimensional formulations
that consider US waves propagating only in the axial direction.
Such simplifications, however, limit the spatial resolution of
reconstructed images due to poor physical constraints [7].
As shown by state-of-the-art pulse-echo speed-of-sound (SoS)
imaging techniques, we can improve this aspect by interrogat-
ing tissue properties with waves propagating along multiple
directions. This is the approach used in computed tomography
in echo mode (CUTE), which tracks echo phase shifts caused
by SoS heterogeneities when probing tissue at different an-
gles [8]–[10]. CUTE has demonstrated unprecedented spatial
and contrast resolution in tissue-mimicking phantoms [11] and
is currently undergoing clinical evaluation [12].

This work presents an extension of CUTE to quantify the
spatial distribution of US ATT in tissue. This new technique
relies on measurements of echo-amplitude variations at each
location when they are detected using plane-wave transmis-
sions with different steering angles. In the following, we
briefly introduce the theoretical relationship between local
echo-amplitude variations and US ATT in tissue. We then
explain the approach used to measure these amplitude vari-
ations and finally present numerical examples showing the
performance of the proposed technique.



II. FORWARD MODELING

The derivations presented herein are formulated in the
temporal frequency domain, where ω refers to the angular
frequency. Assume we emit a plane wave with amplitude A(ω)
propagating in direction k to insonify a medium defined in
the spatial domain Ω with scattering coefficient χ(x), where
x ∈ Ω. If multiple-scattering is neglected, we can express the
backscattered wavefield p(xr,k) recorded at location xr in
terms of the Green’s function G as

p(xr,k) =

∫
Ω

χ(x)A(ω) exp(jk · x)G(xr,x, ω)dx. (1)

In lossy media, k is complex, i.e., k = kr + jki, where
ki = α describes the acoustic absorption of the medium
contributing to the ATT of US waves [13]. Here, we make
no distinction between ATT and absorption. In tissue, ATT
obeys the frequency power law α = α0ω

y , where α0 is the
ATT coefficient, and y is the power law exponent typically
ranging from 1 to 2 [14].

Let us now define the ensemble-averaged cross-correlation
between two signals recorded at the same location and
corresponding to different plane-wave transmissions, i.e.,
C(k1,k2) := ⟨p∗(xr;k2)p(xr;k1)⟩. We consider tissue as a
diffuse scattering medium, meaning that scatterers are spa-
tially uncorrelated and satisfy ⟨χ∗(x2)χ(x1)⟩ = χ(ω)δ(x1 −
x2) [15]. In this case, it is possible to find that C(k1,k2)
reduces to

C(k1,k2) ∝ exp(j(kr
1 − kr

2) · x0) exp(−(ki
1 + ki

2) · x0) (2)

for signal contributions arriving from the vicinity of an
arbitrary scatterer located at x0. Omitted terms are related
to the spherical divergence, scattering amplitude χ(ω), and
amplitude of plane waves. We can make their contribution
negligible by taking small angular differences between k1 and
k2 and normalizing (2) with the autocorrelation. Then, we
extract ATT information by taking the log-amplitude as

(ki
2 − ki

1) · x0 ≈ − log

∣∣∣∣C(k1,k2)

C(k1,k1)

∣∣∣∣ . (3)

Assuming waves propagating as straight rays, the forward
problem in (3) becomes linear and can generally be expressed
as

d = Fm, (4)

where d is a vector containing observed log-amplitudes at each
tissue location, m refers to ATT values α at each location of
the reconstruction grid, and F is the forward operator whose
rows contain discretized ray paths in directions (k̂i

2 − k̂i
1) ·x0

for each observational point x0.

III. INVERSE PROBLEM

We reconstruct the spatial distribution of tissue ATT by
formulating the inversion as a regularized least-squares mini-
mization problem, where the solution is given by [16]

mest =
(
FTF+ λLTL

)−1
FTd. (5)

Here, L is the first-order finite-difference operator penalizing
highly oscillating solutions (Tikhonov regularization), and
λ denotes the regularization parameter, which we optimize
using the L-curve method [17]. Equation 5 assumes normally
distributed noise, equal for all observations [18].

IV. NUMERICAL SIMULATIONS

We use the k-Wave open-source toolbox [19] for numerical
simulations of two-dimensional US wave propagation in lossy
media, with simulation parameters summarized in Table I.
All tissue-mimicking phantoms in our examples have constant
density and SoS, with values of 1000 kg/m2 and 1480 m/s,
respectively, as well as constant power-law exponent y = 1.9
to minimize SoS dispersion effects [14]. The speckle scattering
characteristics of tissues are simulated by introducing nor-
mally distributed (mean: 0; standard deviation: 0.008) random
perturbations of the acoustic impedance at each grid point
of the simulation mesh. Our examples consider five different
phantoms, all consisting of a homogeneous background with
α0 = 0.5 dB/cm/MHz1.9 and a circular inclusion located at 1.5
cm depth. Properties of the circular inclusion in each phantom
are summarized in Table II.

TABLE I
SIMULATION PARAMETERS USED IN K-WAVE

Parameter Value
Transducer:

Type Linear
Number of elements 256
Pitch 0.2 mm

Source signal:
Type Tone burst
Center frequency 3 MHz
Envelope Gaussian
Number of cycles 5

Transmit plane-waves:
Steering angles −30◦, · · · , 30◦
Angular interval 0.5◦

Mesh:
Axial resolution 0.1 mm
Lateral resolution 0.1 mm

V. LOG-AMPLITUDE MEASUREMENTS

We measure the spatial distribution of cross-correlation log-
amplitudes in (3) following a similar approach as in the old
CUTE method for phase-shift tracking. We refer the reader
to [8], [10] for a more detailed description and summarize here
the main steps. First, we transform measured radio-frequency
signals into analytic signals using the Hilbert transform and
reconstruct a complex radio-frequency image per transmission
using delay-and-sum beamforming with SoS value 1480 m/s.
Then, we synthetically focus the images in transmission using
coherent compounding to reduce clutter for angles ranging
from −25◦ to 25◦ with an angular step of 2.5◦. Finally,
we extract the log-amplitude information by computing zero-
lag complex cross-correlations between images of successive
angle pairs and by normalizing them with auto-correlations.
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(a) B-mode images

(b) Normalized cross-correlation log-amplitudes

(c) Reconstructed attenuation images
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Fig. 1. Numerical results using ultrasound data computed from the k-Wave wave-propagation simulation solver. (a) B-mode images showing the spatial
distribution of echo intensity for the phantoms considered in this study (Table II). (b) Example images of the spatial distribution of normalized cross-
correlation log-amplitudes [see (3)] for transmissions with steering angles 15◦ and 17.5◦. (c) Reconstructed images of the spatial distribution of attenuation
coefficient. Dashed circles indicate the location and size of the circular inclusion.

TABLE II
PROPERTIES OF THE CIRCULAR INCLUSION IN EACH PHANTOM

Property Contrast*/Value
Phantom 1:

Attenuation coefficient +0.5 dB/cm/MHz1.9
Echogenicity 0
Diameter 1 cm

Phantom 2:
Attenuation coefficient -0.4 dB/cm/MHz1.9
Echogenicity 0
Diameter 1 cm

Phantom 3:
Attenuation coefficient +0.5 dB/cm/MHz1.9
Echogenicity 0
Diameter 0.5 cm

Phantom 4:
Attenuation coefficient 0 dB/cm/MHz1.9
Echogenicity +6 dB
Diameter 1 cm

Phantom 5:
Attenuation coefficient 0 dB/cm/MHz1.9
Echogenicity -6 dB
Diameter 1 cm

*with respect to the background.

VI. NUMERICAL EXAMPLES

Numerical examples shown herein consider a rectilinear grid
with a 0.5-mm mesh size in axial and lateral directions for ATT
reconstructions and ensemble-averaged cross-correlations over

five realizations of the random scattering media. Moreover,
we use the same regularization parameter λ = 10−5 for all
examples to facilitate comparisons.

In Fig. 1(a), we display the B-mode images correspond-
ing to all phantoms considered here. We observe shadowing
or enhancement artifacts when the inclusion has a positive
or negative ATT contrast, respectively, and areas of dif-
ferent echogenicity for inclusions having random scatterers
with different statistics compared to the background medium.
Fig. 1(b) shows an example of observed cross-correlation
log-amplitudes between beamformed images corresponding to
transmission angles 15◦ and 17.5◦. At each location, log-
amplitude values are related to differences in the cumulative
amplitude loss that plane waves underwent along their paths.
When the ATT of the inclusion varies with respect to the
background (phantoms 1-3), we observe tails of positive and
negative log-amplitude values below the inclusion, similar to
the ones observed in the echo phase shift for circular SoS
heterogeneities [8]. For phantoms 4 and 5, log-amplitude mea-
surements appear insensitive to inclusions with echogenicity
contrast.

Reconstructed ATT images for each phantom are shown in
Fig. 1(c). In all cases, the spatial distribution and quantitative
values of ATT estimates are in excellent agreement with the
true media. Importantly, these results demonstrate that our



method is robust against variations in tissue echogenicity
(phantoms 4-5). Still, we can observe several artifacts in the
reconstructed images: (1) Inclusions with ATT contrast appear
slightly more elongated in the axial direction compared to the
actual inclusion shape due to the limited angle aperture of
pulse-echo systems (e.g., see phantom 3). Similarly, in the
lateral direction, they show unexpectedly low or high ATT
values at the edges for inclusions with positive and nega-
tive contrast, respectively. (2) The reconstructed background
medium oscillates around the true value, with a standard
deviation of 0.06 dB/cm/MHz1.9. Probably, this is caused by
the noise in log-amplitude measurements arising from clutter,
side lobes, and edge waves, among others, and the limited data
coverage particularly affecting the deepest regions.

VII. DISCUSSION AND CONCLUSION

In this work, we present preliminary numerical results
demonstrating the potential of CUTE to quantify the spatial
distribution of US ATT in tissue. Contrary to state-of-the-art
ATT imaging techniques, our method uses two-dimensional
physical constraints to provide images with improved spa-
tial resolution. Specifically, we extract ATT information by
measuring the changes in detected echo amplitudes when
we insonify tissue using different steered plane waves. This
approach does not have additional technical or computational
requirements compared to the algorithm used in CUTE SoS
imaging. Thus, both modalities can be easily integrated into
a single framework to simultaneously provide tissue ATT and
SoS images.

Our method relies on two main assumptions. Firstly, we
assume that scatterers are randomly and uniformly distributed
in tissue, acting as diffuse reflectors with an isotropic radiation
pattern. However, tissue can also contain specular reflectors
that backscatter waves in directions that depend on the trans-
mitted plane waves. Secondly, we neglect amplitude variations
caused by SoS heterogeneities resulting from geometrical
focusing/defocusing, diffraction, and interference effects [20],
[21]. Furthermore, such heterogeneities can also introduce
aberration artifacts in beamformed images, thereby unfocusing
detected echoes and affecting their amplitudes. Future work
will focus on understanding the influence of these assumptions
on the performance of our method using media with higher
complexity.
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